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I. INTRODUCTION

This report presents a three-dimensional, vector, boundary element,
or surface integral moment-method formulation for scattering inside
waveguides and represents a fairly logical extension of two~-dimensional
work done by S. Kagami and I. Fukai,l and also work by E. Tonye and H.
Baudrand.2 The method uses mode expansions in the regular waveguide of
each port, and allowance for multiple ports incurs no additional theo-
retical cost, as this is a multiport formulation. Therefore, at least
in principle, multimode multiport scattering matrix information can be
obtained. The primary restrictions are that the discontinuity boundary
be perfectly conducting and that the material filling the discontinuity

volume be homogeneous and isotropic. These restrictions may, to some

- wmm - "

extent, be lifced.!

Other numerical schemes that produce multimode scattering data are
mode matching"’S at abrupt transitions from one waveguide to another,
and other methods® based upon Solymar's7 equations for tapering transi-
tions between waveguides. These are excellent tools that have recently

been developed to the point of having practical application. Both

T,

methods apply only to two-port transitions, and the central axis of the

two connected guides must be parallel. A boundary element formulation
overcomes these restrictions, albeit at an even more intensive computa-

tional cost.

P

Another approach that could be potentially more flexible than the

one described in this report would be based on finite element or finite

PRI EL B

difference schemes. Initially, we thought a boundary element scheme
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would require less computer storage to implement than a corresponding
difference approach to the same problem. This is probably true for two-
dimensional problems, but in three dimensions it is not. It turns out
that for a boundary element scheme, one needs to compute and store
coupling coefficients from every surface patch to every other surface
patch. This means the storage required is proportional to the surface
area squared or the enclosed volume to the four-thirds power, whereas a
corresponding difference approach requires storage proportional to the
volume. Without knowing the coefficients of proportionality for the two
different cases, nothing more can be said by way of comparison. It is
important to realize however that a boundary element formulation in
three dimensions does not a priori require less storage than a finite
element formulation.

An interesting and possibly 1less computationally intensive
approach, based on variational techniques for irregular waveguide tran-
sitions, is presented by Bernstein, et al.B

This work was motivated by the need for a tool capable of analyz-
ing the rapid transition from a regular waveguide to a slow wave cir-
cuit. Although the theory presented is not sufficiently well developed
to do this job, the goal was simply to develop a framework upon which
such a problem could properly be considered. This 1is primarily an
exposition on the theoretical and computational aspects of the boundary
element method as it applies to waveguide discontinuities. Numerical
results are given for a few simple but important test cases to verify
that the work given here does have substance and to demonstrate, rather

specifically, what types of computational expense to expect.
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II. DERIVATION OF AN APPROPRIATE SURFACE INTEGRAL EQUATION

In this section, Green’'s theorem i1s applied to a scalar wave

‘ e
. ‘ EQ

) function, thereby obtaining the wave function interior to a volume in S%ﬁ
. R
. terms of its boundary values. The point of evaluation is then "pushed” ﬁg&&
‘ to the surface of the volume by a limiting process, yielding a surface 8%

integral equation for the wave function. It 1is then noted that the

electric and magnetic field intensities satisfy vector wave equations,

-,

and that the result derived for a scalar wave function applies to the

' W
3

Tl

S I

(el

» rectangular components of these equations. Vector integral equations

=
25

i, are then obtained by recombining the component equations. To wrap up,

i L

e
Ak o]

the integrand is simplified for the case when part of the boundary is

"
=

pES 7
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perfectly conducting.

i
: Green's theorem,

S0
i
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k - 2 2 3

. $ (89 - ¥9¢) ¢ nda = [ (#Vy - ¥p°¢) d'x (1)

!::' S \'4 .'!

4 o

R A

, applies on a volume V with volume element d3x, S is a closed surface D

O DA

" - e

?, bounding V, with area element da and unit outward normal n at da. ﬂg:'

v LR

] .vf’.')

5 Take ¥ to be a solution to the inhomogeneous wave equation, i

) [ )8

: i

) - - .

y (V2 + )E) = - B (2) e
¥ 1y ¢

[ [ Y

11 i

\ for all points x in the volume V. Solving for vzw in this equation and -é

K) | )]

. substituting the result into Eq. 1 gives M Q
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ﬁsm;)vv(;) - V(X)W (X)] - nda = - fv{r(;m;) +v@®[72 + )o@} o«
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U
AN
(3) -
’:{‘ ‘1"‘
: - K
¢ Choice of the function ¢(x) is quite arbitrary, but Eq. 3 indicates that .«“::&‘
. l:f;!t
some reduction in complexity is possible by choosing ¢ such that oo
: o
, P T N = _= e
= (v + x%)o(x) = - 6(x - x") (4) ol
, . b
S
where 0(; - ;') is the Dirac delta function. In effect, take 0(;) = ;fif;g;
LA
#(x, x') to be a "Green's function.” If the geometry under considera- é:i:::g‘,
'0.5"‘
tion is excessively simple, then the geometrically correct Green's c'-:?:":'
:‘ function, satisfying either Direichlet or Neumann boundary conditions, ""
: is known explicitly. For this case, Eq. 3 reduces to the well known ;ﬁ, ;
Ky ) ‘*
result, & h
: N
: ook
hut’ - - =! 3 oy
#(x') = [ F(x)¢(x, x') d'x (5) oty
v Y
Ly
. Usually, the physically appropriate Green's function is beyond knowing |::
ﬁ. ‘.‘
b explicitly, and so it makes sense to choose ¢(x, x') such that it has no %f
geometrical bias. Clearly, the "best"” choice in this case is the free ‘:;
' space Green's function, DN
; |‘:.:'I‘x
» ’i‘:.i::
- - (;
R :tjklx'-xl '\'.':*.‘
t ¢(x, x') = L—"—___ (6) l\."'.:
4w |x'-x| 8
., v
K In making this choice, it has been assumed that k is constant throughout e '
XY
\J
V. As you might have guessed, the t+ sign in Eq. 6 is arbitrary. But ""'c"
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jot s

for e time dependence, the - sign is the standard choice and the one

used here. For future reference,
_ij

VO(;, x') = £ 2 [jk + %](;' - x) (7) Megint:
4%R

-
> -
p’o"e
33" .

"~

o 10

where R = |;' - ;l. When Eq. 6 1s used in Eq. 3 and x' is taken inside

O
V, the result is hleh b

e on -
L

R

W(;') = I F(;)¢(;, ;') d3x + § {¢(;, ;')VI‘J(;) - w(;)v¢(;’ ;')} . ;(;) da I:::.::
v S
E‘ (8) Nyt

. 17
§ For ;' outside V, the left-hand side of this equation is zero. Compar- %g%%
K ing Eq. 8 to the result when the geometrically correct Green's function e&
. is known (Eq. 5), we see that the price paid for not having the correct :
: Green's function is in the addition of a surface integral to the inte- qgﬁr
i gral equation. :ﬁg
Next, the evaluation point x' in Eq. 8 is specialized to a point

) on S by a 1limiting process that is outlined by Brebbia.3 Figure 1 is a

Fig. 1. Geometry for specializing x' to a smooth surface S.
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blown-up view depicting a small section of the smooth surface S dis-
torted outward by a small hemisphere having radius € and surface Se'
The point x' 1s taken to be at the center of the hemisphere and on the

original surface S. That part of the original surface now displaced

by Se will be referred to as Ae' In this geometry, x' is inside the

distorted volume, so that Eq. 8 remains valid. Now let us see what

change the terms in this equation go through in the limit as the dis-

torting radius € goes to zero. Consider the surface integration in the

far right term of Eq. 8,

V()Y (%, %3 * nda

-jke 1
,,ez L}k + -E-](-e)

nde + lim [
124 Se

Y(X)Vo (x, x') *
S—At

lim [
E*O

2w
nda + lim [ |
€0 o o

x/2

V(X' + er) &

= £ v(x)Ve(x, x')
S

ezsin 6 do d¢

- f VGOUOE, %) ¢ nde - 1 ¥(x")
S

The 1/2 ¢ term, resulting from the 1limiting process above, 1is the

classic result obtained when ;' is specialized to any smooth point on
S. When specializing to corners or edges on S, a more general term of
the form ny is obtained, where n is between 0 and 1. The explicit value

of n can be obtained for each case by the method used here for smooth

surfaces. For edges, we have n = 6/2n, where 8 is the edge angle as
measured from outside the enclosing volume. For right angle corners,
n = 1/8 and 7/8 for inside and outside corners, respectively. Turning
-6 -
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our attention now to the two remaining integrals in Eq. 8, we see that
the limiting process produces no more new terms because the order of the
singularity in the integrands is too low in both cases. With these

results, Eq. 8 can be specialized to
LeGED = [ FGHGE, 3 x + § {0, 2OWE - v, XD} - nda
v ]
(9)

vhere x' must now belong only‘to the smooth subset of points making up

S.

It was mentioned earlier that the electric and magnetic field
intensities satisfy vector wave equations. This is simple to show and,

in doing so, an {important assumption is made obvious. The harmonic,

ejut, form for Maxwell's equations is

vV x E - - jwuﬁ (10)
VxH=J+ jueE (11)
For u and € constant

= p/e (12)

m)

V o (€E) = p v .

Ve (H) = 0 VeH=0 (13)

Take the curl of Eq. 11 and assume € constant,
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Vx9xHsVxJ+ jue? x E s

Substitute for V x E from Eq. 10, rehe!
VxVxH- uzuci =9 x 3 5m"f€

Use the vector.identity, AEER
VxVxiewW.H -vA Sl

to obtain CRCARY,
VY e B) -V -k =V %] e

bt
where kz = uzue. Now assume constant p and use Eq. 13 to get 1?'

VZE t K =-Vx] (14) BN

The parallel result for the electric field is AN
- - - h ¥ R
VE + k% = Juud + -:- o (15) AR

LOMNAT
Equations 14 and 15 are the inhomogeneous, vector, wave equations for ot

the electric and magnetic field intensities, and they are valid at all

Ganr B

5>
P

22

points where v and € are constant, i.e., homogeneous and 1isotropic

regions.
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All that remains to show now is how the result for a scalar wave

function, Eq. 9, can be applied to the vector wave Eqs. 14 and 15. To
do so depends only on the fact that in a rectangular coordinate system,
the Laplacian operator may be written

) 2= " 2

¢ va-elv

H, + e.V2H. + e.V2H

1 2" 72 3 3

~ ~ ~n

vhere e ey and e, form a right-handed set of orthogonal unit vectors

) in a rectangular system. In c&nponent form, we may then write Eq. 14 as

2 2 o=
V'H, + kB =~ |V x Iy

v e e T

where { = 1, 2, and 3. This is a scalar wave equation to which we can

immediately apply Eq. 9 to yield

‘ LaGn - )72 3@ 0 3 a’x

Q.

+f DBE I EEL® -G S oG, 1) e
S

Recombining the component parts of this equation, it is not difficult to

show that, in general,
%ﬁi')-f [v x 3] #(x, x*) a’x

+ § {0, ;')[; . V] H(x) - i(;)[; . Vo(x, x')j} da (16)
N s

4 -9 -

Q‘
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Equation 16 is a coordinate free result despite recourse to a rectangu-

lar system for its derivation, it can be applied in any coordinate , N

system. The parallel result to Eq. 16 for the electric field can be O

written down by inspection.
Up until chis point, the source terms, J and p, in Maxwell's v

equations have been retained throughout. There are two reasons for Ryt

this, one 1is simply that the added generality required very litcle e,

additional work and, secondly, because the equations may be useful for st

examining cavity or circuit interaction with an electron beam. With ":;o::’l'

."‘l'

e

regard to this second reason, great care must be exercised in the appli- :'.4“:4‘,
Y,

POy

cation of an equation such as Eq. 16 because, in high space charge ‘:‘.v".':*

regions, the effective permittivity may vary with position and direc- :.;;‘:c’

oy

L) \i

tion; i.e., plasms permittivities are usually tensor quantities. So, ::“o‘.,

ﬁ‘g":

1‘.\...

except in low space charge devices, the equations of this section may f:‘l‘.\~

not be applicable. From here on, it will be assumed that there are no ;-;:;a;:,

“‘!l'.‘n

source terms in V. ::";::".

e

The only thing resaining to this section is to show how the inte- ”{‘:77

grand of Eq. 16 simplifies when all or part of the bounding surface, S, NN
“~

<, "

is perfectly conducting. At the surface of a perfect conductor, we know $:‘j\

20004

that the tangential components of the electric field and the normal v

component of the magnetic field are zero; Et =0, H =0. So, using Eq. NS
8 0)

- M

11 with J = O, 00

\ '\f"‘z"

W

H - : ﬁ',c %)

v x "t jucEnn 3:'4:.

¥ ‘O:'.z

oy
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From this, it follows that the normal derivative of the tangential

components of A are 0; g; it = 0. Let that part of the surface that is

perfectly conducting be represented by 8. and represent the remaining
part of the enclosing surface by Sg, so that symbolically § = §. + S¢.
With this understanding, Eq. 16 may be written as

i‘i'fs 0(: ( )dc+} 0(:n )-u(—’-) da  (17)
c

vhere now the volume intcgta‘tion has been dropped and the explicit
evaluation points are implied by reference back to Eq. 16. Note that
the integral over 8. contains only three unknown functions, the two
transverse components of H and the normal derivative of the normal
component of H, as opposed to what appears to be six unknown functions
on the general doundary sf.

In the next section, some approximations will be made regarding
the nature of the unknown functions on both boundary types, and the
nuasber of algebraic equations required to find these functions will be

made clear.
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I11. APPLICATION OF THE METHOD OF MOMENTS

The intent of this section is to demonstrate a method for extract- -
ing useful information from the vector surface integral equation of !
Section 11, Eq. 17. The approach outlined here is just one very simple
application of the general technique called the method of moments, or
MoM. 9 NS

First, the field boundaries are considered to be cross sections of
regular uniform waveguides for which the normsl sode functions are

known, and the surface connecting the uniform waveguides, the junction

surface, 1is assumed perfectly conducting in keeping with Section II.
Pulse basis sets are used to expand the unknown H field on the conduct-
ing boundaries, and normal wode expansions are used on the field bound-
aries in the regular vaveguides. The system is excited, or driven, by a
pure mode incident on the junction from any one of the ports. An over-
deterained linear system of equations 1is obtained by delta testing,
point wmatching, on both the conducting and field boundaries. The .‘
unknown set contains the scattered mode amplitudes at all the ports
along with the field smplitudes for the pulse basis expansions on the s
conducting boundaries. I
Figure 2 {llustrates a general N port junction and indicates how
the discontinuity volume is defined by placement of planar field bound- RS
i aries perpendicular to the axis of each regular waveguide entering the o>
junction. These field boundaries can be moved far enough away from the
junction and into the waveguide so that only propagating modes need to .

be considered. Alternatively, they can be moved as close to the o,
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Fig. 2. Schematic diagram of an N port junction indicating placement
of field boundaries defining the discontinuity volume V.
junction as possible, while still remaining inside the waveguide, by
including an appropriately large set of evanescent modes along with the
propagating modes on the field plane. This minimizes the discontinuity
volume.
Explicitly, formal wmode expansions can be used to express the
field st boundary j,
H, =6,

I a,, . h
] U a’ [§.n] (3.,n]7(3,n1]

(18)

wvhere § is the Kronecker delta function and is used to indicate that

1)

the incident mode is in the ith waveguide. Other definitions are:

1,3 Indices over field houndaries.

n,t Integer indices used for ordering and counting modes.
Bach index corresponds to a unique mode at each field
boundary. Mode § at field plane i is the incident or

driving wmode.
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;li.ﬂ] Normalized mode function at field boundary i and for fgi%
mode Nn. The back arrow is used to indicate that this o
mode 1is propagating in the - ; direction. This func- '&ﬁs
tion has the units of magnetic field intensity. 2%?

;(1.“] Sasme as above, except the forvard arrow indicates Eﬂl
propagation in the + ; direction. This function {is kﬁﬁi
used for all reflected and transmitted modes. éégg

8(1,n] Amplitude of mode N st field plane i. Carries no o
units, but the power carried by the associated mode is Bgﬁf
proportional to as'. :E‘:'

The distinction between mode functions propagating along + or - n direc-
tions in the regu’ar waveguides is necessary due to a subtle difference ib
between them as a result of assumed propagation direction. This dis- Wﬂf
tinction s important; it wmeans the difference between success and

failure. Appendix A clarifies this distinction and also gives details H5{

1 on the normalization of the mode functions both above and below cutoff. AR
Equation 17 also requires the normal derivative of h on the field

boundaries. To this end, Mg,

? -

TG LTS I AT TR LT TR

where 8 ) is the propagstion constant for mode N at field plane j and j{ﬁv
1 4

13,0
will be purely isaginary below cutoff. The formula for computing the

6's are given in Appendix A. :}g'
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Now suppose that the conducting surface can be broken down into a
set of simple geometric regions. That 1s, subdivide the conducting
surface into rectangles, triangles, sections of cylinders, etc., such
that all of the regions combined describe or approximate the conducting

surface of interest. The point of this is to use shapes that can be

»

L5
£ -.J

defined on a computer with a minimum of effort. On each region, define

a local set of orthogonal curvilinear surface coordinates (p,s). The

Ly

-

-
-

+
o
-

local coordinates correspond uniquely to a point in the absolute coordi-
nate system (x,y,z) by the surface mapping M, which depends on the

surface shape, orientation, and location. Symbolically, M(p,s) *+

(x,y,z) for all p,s on the defined region; i.e., M takes the surface
coordinates (p,s) into the absolute system (x,y,z). The surface tangent
unit vectors should be such that ; x ; - ;, vhere ; is the outward unit
normal to the enclosed volume V. The unit vectors ; and ; are later
referred to as the unit primary and unit secondary directions.

The transverse components of H on the conducting surface can now

be expanded, approximated, by a pulse basis expansion on each region.

H(a;p,8) = ] H

P (p,s) (20)
lﬂ,kll t[‘okll [a,k1]

vhere the following definitions are used:

a Integer index used for ordering and counting the
simple geometric regions used to build the conducting

surface.

W W g O a W, g b - A . . IR P e T I ;
' ' ’ I.’ ? . - " .' .I - = - * - .l e a®p "o s PR, - .
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k,1 Patch position indices used for ordering and counting ::4'.;1",'
et

l";:'l'

the patch positions on region a. j::.,::.

;';:i":'t

P»s Local coordinates on region a. KA

Sum over patch positions k,1 on region a. Nt

[a,k1]
Ht Constant, transverse magnetic field amplitude at o:u»:::
[a,kl] :::’ti:f;
position k,1 on region a. Carries units of magnetic .9‘5“;:,"«
.n &in'
field intensity. -
e
- ,"' \‘3‘
Ht(a;p,s) Approximation to transverse H field at local coordi- c:::::}_‘
‘5.”
(W
nate positions p,s on region a. 2:*:‘;:‘
™ 'a;
» )
P (p,s) 1 if p,s 18 on patch k,1 in region a. O otherwise. . :::"‘
[.akll I‘.s‘ “!
50!
1]
This last equation defines the pulse function. Note that nothing here .,n':f:?
requires the patch shape to be rectangular or flat; indeed, the sub- b 'c
N
domain patches ordered by indices k,1 on region a need not be flat or : :5."

rectangular. The pulse function is simply a function having value 1
when the local coordinates p,s are inside patch k,l1, and 0O otherwise.

The normal derivative of the normal component of H can also be expanded

on a pulse basis. Let “r'n H -:: Hn. Then,

‘;l":l'|

) (p,s) (21) R

BiGaipe) = L B Pl (ps
" [a,k1] "[a,k1] [2:K1] R

where all the same notation applies.

While the pulse basis set may be the most flexible and convenient,

it 1is certainly not the most accurate basis expansion available. The
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pulse expansions in Eqs. 20 and 21 approximate smooth functions by
functions with abrupt jumps at patch boundaries. Clearly, some physics
has been lost by this approximation. Reasonably simple subdomain basis
sets that are capable of C° approximations,lo smooth approximations, are
linear interpolation on a triangular net and bilinear interpolation on a
rectangular net. On a triangular patch, the linear interpolating poly-
nomial g has the general form, g = a + bp + cs, where p and s are the
surface primary and secondary coodinates as before. The three coeffici-
ents, a, b, and c, are uniquely related to the values of g at the three
vertices of the triangle by the index equation g; = a8 + bpy + cs4; 1 =
1, 2, 3., This 1is trivial to invert for the polynomial coefficients in
terms of the vertex values gy. The underlying basis function for this
interpolant is sometimes called the rooftop function and can be found by
setting two of the three values for gy to 0 and the third value to 1,
then solving for a, b, and c. For rectangular patches, a bilinear
interpolating polynomial, g = a + bp + cs + dps, is used and again the
four coefficients are uniquely determined by the four vertex values.
The underlying basis for this interpolant is called the pagoda function
and can be found as before by setting three of the four vertex values to
0, while setting the fourth equal to 1. These basis functions are
almost as flexible as pulse functions. The additional organizational
complexity required to implement a scheme using more appropriate basis
sets may prove worthwhile by producing more accurate solutions.

At this point, we have approximated all the surface fields using
expansion functions. This limits the domain of the function space. Now

we have only a finite set of unknown coefficients to look for, not
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entire functions. On the field boundaries, the unknowns are the mode KRRT
amplitudes, and on the conducting boundaries, the unknowns are the pulse el

function amplitudes. The next job is to relate these unknowns through

the physics of the situation. ,:.’:,5::':

Clearly, the surface integral equation from Section II, Eq. 17, ::S:Z:S;f:’
provides the relationship we need between the surface fields. Using the ’::':E:
field expansions, Eqs. 18-19 and 20-21, in the right-hand side of Eq. 17 .::.0'.::3:(
yields a formidable looking result '5::3:*':

'% H=] I {u f ¢nda
a [a,kl] {a,kl] [a,kl]

-H § ; (V¢ o a) da
Pla,k1] [a,k1]

(] : ‘:,:'I.'.&;‘

< A
Ry

o WA

e
2

- B, $ s (8 * n) da
[aok-l] [3)k1]

RELAL
i

<+ !
+ - V% * nph da .
’(S 18[1’£]¢ ¢ (i,€] \ ":
i g‘\ Wi
-1 1 a § 138, 6+ ¢ nbh do (22) MLy
(3,n] [3 vn] (3 »nl e .
3 (3,n] S fhlagil
b W
i
NRTh
Where the transverse H field has been decomposed into its primary and &
secondary surface components, AN,
St ot
.'a::"o:.:t
"Q‘::t'."'.
H pl + sl ::"“';.':.:"
- s { :
“la,k1]  Pla,k1]  ®(a,k1) .
it
Ey
Note that the integrands contain only explicitly known functions; the t:‘sf
AR
free space Green's function is given by Eq. 6 and its gradient by Eq. 7. m
RSN
ALY,
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- We can now generate a systemS of linear equations by systemati-
cally enforcing Eq. 22 for a discrete number of points in the range
of ;' on S. This is called delta testing or point matching. So, test
Eq. 22 at the center of every patch on each region, points [c,mn], and
use expansion Eq. 20 on the left-hand side to obtain three scalar equa-

tions, one for each of the three vector components. They are:

The primary equation,

W ; [c,mn] . 7 a ; —[c,mn]
; [c,mn] ~ [i £) RS (§,n1Plc,mn] ° [j ,n] t
L . ,
& #D L AR e * Slaia)
e a [a,k1]] "la,k1] (™" a,ki] A
: . 2t
B =[c,mn] {c,mn] Y
b . s I ’ >
) ’ Hp[a,kll _p[c,mn] gp[a,kll 6[2 k“] *
:g x
by + H P . glesanl (23) R
?2: S(a,k1] [€»mn] gs[a,kll :
n" e
‘ Secondary equation,
ol
5
A - =[c,mn] - -[c mn ] o
’ s[c.mn] (1,8] § [J)"n]a[j,n]s[c,mn] [j ,nl "x(.
\'
(s +) ) {-mn s . glesmn]
"~ a [a,kl] n[a,kl] [c,mn] [a,k1]
g ° ~[c,mn]) -
« + H 8 . g : :
: p[a,kl] [C,mnl p[a,kl] ::1:::
> - . -[c,mn] 1 [c,mn]
P, * Hs[a’kll[slcymn] gs[a,kl] + 2 6[8,}(1]] (2“)
Wy
.':
\
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Normal equation,

-~

gle,mn] _ - Flc,mn]
Brer "1 L Rrgn1te,m) * Fisin)

"e,m] °

+ D B o .
E [a,k1]| "[a,k1] "le,mn]

=[lc,mn]
[a,kl]

a

. slc,mn]

+ H n[ ]
Pla,k1] '&™® Pla,k1]

~

a . =lc,mn]
Sla,k1) [&m] T8, )

+ H

In Eqs. 23, 24, and 25, the following definitions have been used:

[c,mn] Used to indicate that the test point is at the center of
patch mn on region c.
[a,k1] Evaluation region, indicates that the integration vari-

able x runs over patch kl on region a.

[c,mn]

®la,k1)

Kronecker delta, has value 1 when a = ¢ and m = k, n =
1; O otherwise.
Sj Indicates that the surface integration runs over field

boundary j.
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[
-[cvm]
a1 "7 PPrer®

.

-
=[c,mn)

F[j’n] = js[j’“]¢ +
L

~

én da
la,k1]

=[c,mn}
G[a,lcl] - f

gl oy p(V6 * n) da

p[a,kl] [a,k1]

={c,mn]
8(a,k1]

= Fla k15T * ™ do

We now have as many equations as there are surface patch unknowns, and
require at least as many more equations as there are modes on each
port. Again, this can be done using point matching; only this time, the
matching is done on the field boundaries. Use Eq. 18 on the left-hand
side of Eq. 22 and test at point mn on the surface of field boundary c,
point [c,mn], where ¢ is used here as an index over ports.

=[c,m] 1 +(c,m]

B[irE] --isich[c’el

=(c,mn]

—.H' G
a [a,kl] Mra, k1] [a,kl]

-[c,mn]
Pla,k1] Pla,k1]

+ H

-[c,nm]
®la,k1] ®(a,k1]

+ H

+1 ) a =lc,mn] 1 +{c,on]

3 3,n] FRITIEY IR IS LI Y (26)
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| The testing points [c,mn] in Eq. 26 should be fairly uniformly distrib- e

uted on each field boundary to optimize the condition number of the e
: resulting system of equations. If you have K modes on each port, the :.:;:::‘
I‘k. number of test points L on each port required to determine a solution is ':%::'-%:
DA
! given by L > K/3; L must be an integer. The factor of 3 results from ".:::'.::’.
i the fact that Eq. 26 is a vector equation, so three scalar equations are ._
. generated for each test point. ::‘
Q: The equations that result from testing on the conducting bound- SO
: aries, Eqs. 23, 24, and 25, and those due to testing on the field bound- _"
) aries, Eq. 26, form an overdetermined linear system of equations and ‘ ':
. will later be referred to, respectively, as type A and type B equa- \!&
,’ tions. If no approximations had been made obtaining these equations, ‘:
Y they would be perfectly consistent and a unique solution satisfying all .):‘:"
¢ the equations would be possible. But the pulse basis expansions are not -'\!:;
X smooth and, hence, cannot perfectly mimic the physically exact solu- :ET\'
: tion. As a result, our system of equations 1is inconsistent. In a E£S$
; strict mathematical sense, the system of equations developed here has ;%\
no solution; that is, there exists no solution vector that can perfectly ,. -4
satisfy every equation in the system. However, from a practical point é »
\ of view, the system has minimum residual error solutions where the -
;‘ residual error is measured by some suitable vector norm. .f
; Classically, a least-squares residual error solution can be '::;
. obtained by premultiplying the overdetermined system, Ax = b, by the ':'
) conjugate transpose of A, A+, and solving the resulting square system of :‘::'i
) equations using a standard method. This results however in squaring the é:':
‘ o

condition number of the original system of equations and should be
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avoided, since moment-method matrices are notoriously ill-conditioned in ':EE:'

the first place. Methods for finding the pseudo-inverse of A that are -

' based on finding its singular value decomposition, which is nondependent 'EE"‘;E
vy

on premultiplication by A+, and are available as library subroutines ‘E:!‘.»

which should work. But they run at substantial overhead cost and S

‘: require a significant amount of additional storage. :.E\:
‘: For the results in Section 3, a variant on the iterative algorithm .':::.i

e
[

called ART was employed. The synonym ART stands for "algebraic recon-
) struction technique™ and was first used extensively on early X-ray CT

scanners; it was the algebraic tool used to reconstruct cross-section

profiles from X-ray attenuation data, and hence its name. This algo-

NI

ﬁ rithm and some variants thereon are explained in detail in Appendix B. Eﬁ:
h Briefly, it 1s a row by row steepest descent algorithm that can be :gl‘;;f
' relaxed to give minimum norm error solutions. Being a “row action” ?“ L
f method, ART can be implemented with just one row of matrix elements in E:r“
\ the computer core at a time, keeping all other rows on disc space. E::
!

Because disc access time is slow, it is best to read in as many coeffi- M

7. clent rows as possible, so that the number of disc access requests is -:...._
b minimized. Although ART exhibits only a linear rate of convergence, E§$
: guarantee of convergence does not depend on degree of diagonal dominance ‘.f
as with, for example, the SOR algori(’.l'un;11 indeed, ART converges almost \'.::*E

:' unconditionally. t"::..\
!
’ 1f the system of equations developed in this section were per- ..‘
fectly consistent and very well conditioned, there would be no need to ‘o,::.:

look for any more help in finding the solution because all the physics

> oo
Z—__';:

would be represented and mimicked by the equation system. But, as was
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noted earlier, some physics has been lost. To some extent, we can
reintroduce the physics by making our spproximate solution have at least
some property in common with the exact physical solution. This takes
the form of enforcing a conservation of power constraint on the solu~
tion. Mathematically we require that all the propagating power, real
power flow, in the reflected and transmitted modes must be the same as
the power carried by the incident mode. Since the normal mode functions
in Eq. 18 have all been normalized to carry the same amount of power, we
can write,
*

1=] | a a (27)
i 1581 (5,81%(3,8)

vhere 8 is the susming index over only the propagating modes on port
j. This constraint was enforced at the end of each ART update of the

entire systsem by a constant phase adjustment. The update takes the

following form: Let '::)nl be the predicted mode amplitudes at the end
of the kth ART pass, then adjust the mode amplitudes to a§:+:] before
starting the next ART pass by using
‘(k)
! ) LY ‘(k)*
§ 1yt 10,81°13,8]
(k+)

Doing this, the values of a always satisfy Eq. 27 without altering

(1,n]
the phase of the initial values. Enforcing this constraint also tends
to accelerate the overall convergence rate for the algorithm by reducing

the solution space to only that class of coefficients that satisfy Eq.
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X
27. Other constraints!? may also be used; if, for example, you have ':::q-
W
St
sysmetric ports, then constraints on the solution based on that symmetry
N
should be used. ',:.-'":A
i,/'
As an aside, Spielman!? used a formulation similar to the one Z:'jfs
described here (but in two dimensions) to find the cutoff resonances of
. L4
' arbitarary cross-section waveguides. When there are no ports, Eqs. 23, by
“
L
g 24, and 25 reduce to a square matrix system of the form Ax = 0; this is :‘
) .
' g
an eigenvalue problem for resonances in a three-dimensional cavity. :
‘ .‘ i
" Spielman found the eigen or resonance values by searching for frequen- .\ y
"'
cies wvhere the magnirude of the determinent of A has minimums. Cowmput- "e
v' ! )
ing a matrix determinant is an N cubed operation, where N is the edge
. 7y
: dimension of the wmatrix. Embedding an N cubed operation into a search “fv'
3 l'. 1
) algorithm means slow business. This is also a nonlinear eigenvalue .‘ ]
N ';‘\;‘t
problen. Since all the matrix elements vary in a complex way with *
v L4
) 'f.‘.'
{ frequency, it cost N squared numerical integrations over surface patches :::,
s}
¢ to update A to a new frequency. Spielman gets away with all this A
$
because his mactrix size is small, only 21 by 21 elements. It seems ‘
" RO
$ unlikely that a practical algorithm for finding eigen frequencies in ::-'_',"
" ;f\
three-dimensional cavities, based on this approach, would be possible. :‘;
Y NN
LN
) :;:
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3
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IV. RESULTS A A3
G ‘lvf!
A
This section gives numerical results for a few simple test cases
l'..n o
based on Eqs. 23, 24, 25, and 26 in Section III. The job was broken e
down {into three sections. A Fortran code was written to implement ;';;:.'.’
each. The first code allows one to build s data file specifying arbi- <v.
l"“h
trary rectangles in three dimensions. Discontinuities that could be :‘}‘-:
N
AN
built using rectangles were the only type considered. Then, for each (:ng
tedA

wavelength, a second code computed on the order of N squared coupling
coefficients, where N is the total number of unknowns. The last code

“solved”™ the overdetermined system of equations using a variant on the

ART algorithm. These Fortran programs are documented in Appendix C.

I

They were all developed on the Gould 9080 computer system at the Univer- :?.'-?.\
N

sity of Utah College of Engineering. E£~$
Writing a code capable of specifying more arbitrary shapes is ?:;.:
certainly possible but, from an implementation point of view, this job :%E'
of specifying and organizing the surface geometry is the most diffi- ?‘E“s'x’

cule. Once the surface shapes are specified and ordered by some ?;:. 3
accounting system, the calculus follows mechanically from the equations :j;‘;g

of Section IIl1. The purpose here was only to find out 1f, and then how ;',:.‘4.\

well, a formulation of this type could be expected to work. So while a ‘\ ~
code limited to only discontinuities that could be built from rectangles _,:;.\.

is of no practical value, it wss entirely adequate for answering many :'\\
basic questions concerning the performance of the algoritham. - }
Data are presented for three test cases. The first two are very ;:é;‘é

simple, a straight section of uniform waveguide as a two-port junction :’Ef
._-:.:-:.:

RN
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I"l

i

l"‘.:

o

and & straight section of uniform waveguide with a perfect short on one :.:f:.

l:':t;

side. These test cases, although trivial, are important because exact R

analytic results are available for comparison. They were used initially '.tkl"‘,

I'.‘iL’

to debug the Fortran codes, and later to help answer such questions as H":..‘g

S

l,"ll'

how meny surface patches are needed along the length and across the e

R

width of the waveguide at a given operating wavelength i{n order to . ':‘j

1 * 1
f: retain an accurate solution without wusing an excessive number of -3:,
. * \J
! patches. For the c<traight section of uniform waveguide, results are P
Rt et

'’ given with and without the conservation of power constraint enforced. ".::
K KR
. o
7“ An asymmetric iris in a straight section of uniform waveguide was ';;v.,‘
N ":..
! considered as the third test case. These results were compared with o
. il
, analytic results found using approximate susceptance data available in ‘.:u‘:
()

# .\.
N the Microwave Engineers’ Handbook ,!"* Vol. 1, p. 8l. For the reflected &:
' g
) phase and amplitude, measured data were also obtained using a slotted >
.

! line for further comparison. Data are also given in this case showing ;::"f
s "P.‘f
y 'J:.'
:: the equation consistency (average residual error per equation) as a Lo
. Y
! function of wavelength for the solutions presented. -
. N
- LA )
N Case 1. Straight Shot Data e
K] ot
A @
N\ In this case, the TE|, mode in a rectangular waveguide is numeri- N
cally “propagated” for a distance of one tenth of the free space cutoff .-"

L} ‘
' wavelength, Ac' along the guide axis. In Fig. 3, the cross-section Py
[} :'f )
", dimensions were a = 0.5 A and b = 0.2 lc, or equivalently by 0.5 hy 0.2 N
¥ cutoff units. a}‘:
‘ -~
R Y,
|

My
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Fig. 3. Waveguide cross section for straight shot data.

The surface patches were such that we had 12 subdivisions along s,
2 along b, and 2 more along the axis. Each field boundary was tested at
24 uniformly distributed puints. This resulted in 168 surface patch
unknowns and 2 field boundary unknowns. Since the field boundaries were
tested so many times, we had 312 complex equations.

Two sets of results are given, Figs. 4 and 5 represent the solu-
tion obtained without using the conservation of power constraint, and
Figs. 6 and 7 show the solution with the constraint enforced, as out-
lined in Section II11. On all the plots, the abscissa gives the operat-
ing wavelength in cutoff wavelength units. The upper curve in Figs. 4
and 6 represents the computed transmission amplitudes, while the lower
curves on these plots are the computed reflection amplitudes. Clearly,
the exact results should be unity transmission and zero reflection
amplitudes. Figures 5 and 7 are the transmission phase with respect to
the input plane for the unconstrained and constrained cases, respect-
ively. On these plots, the marked curves are from the computed data,

vhile the solid unmarked curves represent the exact phase given by

1 - R?

¢ = - 36 =

wvhere the operating wavelength is giver. by A = R Ac.

0 ) A‘ .0.‘ N.‘ 4 ‘“\:"\:.\:.\;\1' '\:\:'-.: P . - . :- PR »
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Fig. 4. Computed transmission and reflection amplitudes
ke for the straight shot case without the conserva-
! tion of power constraint enforced.
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] Fig. 5. Computed versus theoretically exact phase
for the transmission data in Fig. 4.
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From these data, it can be seen that the conservation constraint
made very little difference in the solut'on. The transmission phase and
amplitude are slightly more accurate with the constraint enforced, but
the reflection amplitude was a bit more accurate without the con-

straint. Note, the overall accuracy in the unconstrained solution

-~
e e

indicates that the isystem of equations used has retained most of the

-~

L

physics despite the expansion function approximations. One of the most

g

remarkable aspects of this solution was the ability of the numerical

algorithm to accurately track the phase all the way from the low fre-

" -
T .

quency end, where the guide wavelength is much longer than the free

i
- e -

space wavelength, up to the high frequency end, where the guide wave-~

length and the free space wavelength are not much different.

Case 2. Straight Shot with Perfect Short

For this case, the TE|, mode in a rectangular waveguide 1is numeri-

XS
" / .l .l "
MARARAN

cally reflected off a perfect shoring plane 0.1 lc away from the refer-

. e,
L4

ence field plane. The guide cross section was the same as for Case 1.
Again, 12 subdivisions were used along a, 2 along b, and 2 along the
axis. The shorting rectangle was subdivided into 3 by 12 patches along
its short and long axes, respectively. The field boundary was tested at
36 uniformly distributed points. This results in 276 surface patch
unknowns and 1 field boundary unknown, for a total of 277 complex
unknowns. The number of complex equations as a result of testing is

384.
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Again, two sets of results are given. Figures 8 and 9 give the
amplitude and phase for the unconstrained solution, and Fig. 10 gives
the phase for the constrained solution. In the case of the constrained

solution, the amplitude, as a result of the constraint, 1is exactly \

&
e

R
h ¢
sﬁ?

unity, and so was not plotted. Both phase plots indicate the numeri-
cally predicted solutions with marks; the unmarked curves are the exact

phase results which are given by

¢ = - 180° - 720 i

where, as before, R is the abscissa value on these plots. The abscissa
value is related to the physical wavelength by A = R Ac.

While the phase tracking is not bad for the unconstrained solu-
tion, the reflection amplitude (Fig. 8) deviates away from unity by as
much as 10 percent at the short wavelength end, R = 0.4. In the region
where the data overlap the phase accuracy of the constrained solution is
a bit better than for the unconstrained solution, and is not bad all the
way down to R = 0.2. Of course, as was previously mentioned, the
reflected amplitude is perfectly unity for the constrained solution.

Although the unconstrained solution mimics the exact solution rather

=7 W

well, the value of the constraint condition as a means of improving the

; [
. ) ".fi“‘j

solution is much clearer here than in Case 1.

i

7,

o)

ot

P
742

e,
;.’:-.:s o
PR s

vy,
; P4
"‘”:‘."
"_?
)

ot g ."

Sy, A N L W ~ ’ ; PR IR P I iy Py Ty IS RN
Yooy M}:’" f":"\';"‘v oY W ﬁa BN N

‘Iﬁl > o
\ N - o S A S N
%.q ‘. c,‘l v 8% 4. '.:ll.c (0 e B X MLae 1t N I A ;“"' 4 > W o )




12.

10.

1.E-1

Transmission

Scale =

4

:

1

Amplitude

e A W
ot

L, | | 1 ] | } {
0.9%55 l L 50

.40 .20 .30 .40 .80 .60 .70 80 .90 .00

‘.

Wavelength -

. Fig. 8. Reflection amplitude for the straight shot case with 4
) a perfect shorting plane on one side and also without ™
' enforcing the conservation of power constraint.

o~ =180 00, n
) -190 )
. -200 )
’:‘ -210 .

Y 8y
)
A

-
-

ARLEi
;?"-'

N -2%50. W
D 0 _260.00 LOSe
by g 270. 001 ol

v‘ - . Y
A q@ -280 ”'_ | :ls’-“

" . ! &f'.*
s, -290.00f ; v

- -300. / i ) -‘

R ~310 o
r, - l NS
£ -320. ' ! 'J"
:. -330.00— !

N -uo.ooL- | e
, -m.oot | i .
» ] | l | 1 1 | | ; '
. 36000755 T10 L -3 0 % 760 T30 N 90 1.00 o
. "

:{ wavelength ,'\'
:: Fig. 9. Computed versus theoretically exact phase Da{s
- for the reflection data in Fig. 8.

¢

.‘

o

o

3 - 33 -

by

l’

»,

oA RO AL s

" S
PN A O NN N
nla, .-.(u:. DS

‘-'\
)‘"\

WS W)

P e N nln\t"n A l.c.

>z
o




e g 8. i ve s aTh e x5 a's nts 201 2'8 8 @ € s g ca® Ba® €0 b a8 a6 TaFaba el ) Al BVa At 2. A'a Ria 443 4 65 40 8 F 0 PN $ 80 6.V Batii) Sp Biap g blA Y . b Lt K]
. 9 Q
R L} M
'

l&c
! )
L

: . T
[ y °°r :.’:l::"l
K -200. ! .'l."'i
g 4y
X -320. :50::,;“-
¢ -240. ‘:' )
!,- -260. I.A'l'.t'
X -280. 0
21 -300. l.l"’

i |":l

'f‘ -320. ..';

i o l",l

& =340. 1t
)] (M)

0 -s60. 'y
'

! & -380. L w1
. -400. (rhed
k -420. tﬁ?
¥, o
X -440. "
i. b
i, -480. o5 )

~480. e
5

) -500. g "
.’ ~-820. s, ':
: | | | i | 1 1 | '
» ~840.06" 50 l.zo -20 T ) 5 T80 70 % o 1.00 gttt
oy A J:

Wavalength {

) s
- Fig. 10. Computed versus theoretically exact phase for _,:
o the straight shot with shorting plane case with RN
v} the conservation of power constraint enforced. ::.':.‘;
«. 3
Y Case 3. Straight Shot with Asymmetric Iris oy
g R0y
: In this case, an asymmetric iris is placed 0.1 Ac away from the {:1;-\,
b Y o

input port, and the output port is 0.l )‘c on the other side of the

Wt
iris. The 1iris is assumed to be perfectly conducting and to have zero :-5;,“
Ay
thickness (see Fig. 11). The waveguide cross section is the same as for EQ-:\\

; AN
. Case 1. This geometry was subdivided using 16 divisions along a, 2 ‘.
» N
’ W
along b, and 4 along the axis from port to port. The iris was subdi- E::::":

[ U
4 Y
vided using 3 by &4 patches for 8§/a = 0.75, and 3 by 6 patches for 6/a = "1:}‘
Rigtat
; 0.625., Note that there are two 1ris rectangles, one for each side. 5 -,
| ::(:?:._
M

b e,
L%

) "
A

~
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Fig. 11. Geometry for asymmetric iris.

The dominant TE,;, mode was used to drive the system, while the
first 8 TEy, modes were considered in the field expansions at each field
plane or port. Each field boundary was tested at 32 uniformly distrib-
uted points. Taken all together, this resulted in 504 surface patch
unknowns and 16 field boundary unknowns, for a total of 520 complex
unknowns . The number of complex equations generated by testing was
696. This 1s for the case 6/a = 0.75. In the case §/a = 0.625, we had
556 complex unknowns and 732 complex equations. Computation times were
on the order of 25 minutes per wavelength to generate the coupling
coefficients, and 10 minutes per wavelength to solve the resulting
system of equations. These times are for the Gould 9080 computer
system when there are no other users on board.

The conservation of power constraint was enforced for all of the
computed curves for Case 3. The numerically computed solutions are
marked by "o" for TE|, results, and by "*" for TE20 results. Reflection
phase measurements were made using a slotted line, and these results are
denoted using an "I" symbol on the reflection plots. The solid unmarked
curves are results predicted using published susceptance data, they are

for TEIO comparison.
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Maracuvitz!5 indicates that susceptance data of the type used f’
s
N .'l {4
. here have been derived by the "equivalent static method,” which uses the f(
: static aperture field for the two lowest modes. In terms of these data, tf“'
It "

8 the complex reflection amplitude is given by

-2jBL

W - -4 e 55{
§ a (o) =30y /8] =3 Py
0 )
kY ¥
: :

¢ and the complex transmission amplitude by b

: 238L o
“ . 2(Y_/B) e J sy
0 at(2L) = 3 ; 78) s
,. SWDEE 3

& 4.

-
"o
* 4

S

7

where the ratio Y /B is found on page 81 of the Microwave Engineers'

G
-
' J
-

LS

PSRN R
—Ra-

-

Handbook,l“ and 8 = 2!/13. For all the data 1in this section, L =

0.1 lc.In the limiting case of a perfect short, YO/B goes to 0, and the

- - = L )

' equation for the reflection amplitude gives a (o) = e 238 ,» which is the Fk?‘
) \'\‘.
\ o

. correct amplitude, but the phase is wrong by 180°. One can simply $§£

o ard
[~

multiply the equation by ~1 to correct the deficiency, but rechecking

180° brings them into closer agreement with both the measured and numer-

X the derivation did not warrant this. The reflection phase curves were ;:ﬁx3
d eoed
() AIAN
: all plotted with this 180° discrepancy removed. Shifting these curves ;3::
l* -’-
¥ R

K ically predicted phase curves.
X Figures 12-15 are the computed solutions for §/a = 0.75. 1In this ﬁb

case, agreement between the numerical solution and the solution found

using susceptance data is really quite good, especially for the trans- Q“ﬂ

§ “

é mission data. Figures 16-19 give solutions for §/a = 0.625. Here the §§§T

¢ agreement is less striking. Keep in mind that the susceptance data are \
_.‘

3 ,:
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f, not exact. Compare the reflection amplitude curves in Figs. 12 and . s’:‘:
v “
16. Note that the susceptance data solutions have changed quite s
- )
j: markedly, while the numerically predicted solutions differ more A '
4 ] Q‘
\" i ’
. modestly. The numerically predicted solutions also appear to vary in a 3.;'::::
' EOA]

more realistic way near the transition region, where R = 1/2. Although

:; not conclusive, the measured reflection phase angle 1is closer to the N
K g’b ']
0
n:: numerically predicted curves than to the susceptance data curves, even \:
N .
! )
when these curves are corrected by 180°, as previously mentioned.
»'. \ ,
3' Figures 20 and 21 give a measure of the consistency in the equa- :"‘-
o P
;: tion set at that point in the iterative process where the solution was '\
N X
s AN
taken. The ordinate on these graphs gives the average error per equa-
A
Wy tion. The reason for this inconsistency was detailed in Section III; it
E is primarily due to the pulse basis approximation. These graphs show
) that the equation sets are more consistent at the high frequency end
2‘ than at the low frequency end. Although this was not expected a priori,
i
t: one postulation is that at the low frequency end, the guide wavelength :-\
.I' »y
is much different from the free space wavelength, and the effect of the N
!ﬁ‘ ¢
\: waveguide walls is much stronger making the surface patch approximation :-::.f
) AN
‘ ‘2
\ more important. On the other hand, at the high frequency end, the guide :::::'
' (W)
Al ¢ L"
wavelength and the free space wavelength are nearly the same, so the :
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e, effect of the guiding walls is less critical. ::‘::
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. V. CONCLUSIONS AND RECOMMENDATIONS

) This paper has presented a three-dimensional multiport formulation
' for waveguide scattering. Simple test computations were made to verify
the validity of the formulation. Test data were found to be in good
’ agreement with results obtained using other methods for TE|o compari-

son. In the case of the asymmetric 1iris, results were obtained for

;.n higher order TE modes as well; these results are of dubious accuracy, as

‘:; no other data were available for comparison. It is suspected that the 3‘.

‘::‘ higher wode accuracy will diminish rapidly because the patch size é"
:: becomes comparable to the rate of variation in these modes. 2’: ),

..: Although the formulation presented here is quite generally valid, -..3:
. _-::'n
it may be more expensive, both in terms of storage cost and in terms of :_’,-.‘;
5 Sl

\ computational intensity, than a corresponding three-dimensional finite ._‘:‘\.'j

element approach. Computationally, one must compute on the order of N

\ squared numerical integrations at each new wavelength. Because the

solution algorithm 1is {terative, the same coefficients are needed

several times, and hence all N squared complex numbers must be saved.

't The recomputation cost is simply too high to do otherwise. This repre-
: sents a storage cost proportional to the surface area of the enclosed
‘«‘, volume squared, or equivalently proportional to the volume to the four-
thirds power. Finite element methods would require storage proportional
n to the volume. So a formulation of this type may not be competitive
:.' with the finite element method for internal scattering problems. The :‘J’
:,:" formulation of this paper may, however, be valuable for determining the :‘(
, y
‘f. scattering characteristics of slots in waveguides; that 1is, junctions
.
g/
.
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that 1involve radiation into free space. Here, boundary conditions

external to the waveguide must also be taken into account. Unbounded

problems pose more difficulties for finite element formulations than for

surface integral equation approaches.

The formulation in this paper could be pushed into a category of

useful mathematical software i1f some of the following problems could be

solved:

SR

1.

9, G5 A GCEAV,LRL TN A R RS YL Sl P S Bl N Syt Sy
B N S S .-:& I I NN NN O WOV
f

A generalized surface generation routine could be developed
that would allow the engineer to rapidly define new surface
geometries. This might be done using a triangular net bound-
ary. Each net point could then be moved about in three dimen-
sions to form a wide variety of surface shapes.

Because the integral operator is a “smoothing” operator, we
got away with using a pulse basis expansion on the conducting
boundaries for the simple test cases of this paper. However,
it is suggested for more complex geometries and increased
solution accuracy that a smooth C° basis set be used. For the
triangular net above, the rooftop functions described in
Section III would form an appropriate basis set.

For the asymmetric iris data, the bulk of the computation time
was tied up in computing the coupling coefficients and not in
solving the resulting system of equations. Algorithms capable
of rapidly and accurately approximating these coefficients
would be valuable.

Many important problems involve at least one plane of sym-

metry; if this symmetry could be exploited, the number of
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unknowns would be reduced by one half and the matrix would

have only one quarter as many elements.
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APPENDIX A O

! NORMALIZED MODE FUNCTIONS AND EXPANSIONS it

Part 1 | ":‘ X

General relations for EM waves on a uniform cylindrical waveguide- ﬁaﬂj
ing system with care taken to preserve sign changes as a result of N
assumed propagation direction. SQ}

In a uniform waveguiding system, that 1is, a system having no
physical or material variation along the z axis, it turns out that we ;ﬁ’
have simplified relations for the transverse components of any mode 3?4&_
supported by the structure in terms only of the axial, ; directed field &ﬂ?&f

components.

.
p
i

i
ey
AT,

To this end, expand the field vectors and the del operator into

‘51_ ‘ot
]

VO Ty

CAAAL

1)
b

i their transverse and axial components,

S
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>t
(11}
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+
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N
: »
%3

<}

11}

<]
(a4

+

<]

With these definitions, note that

Using this identity in Maxwell's equations, Egqs. 10 and 11, and iden-
tifying component directions, we obtain two relations for the transverse

components of the equations,
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vt x Ez + Vz x Et = - j‘""“t (A.1)
Vt x Hz + vz x Ht = jmeEt (A.2)

Since the structure is uniform along z, we can assume that mode m will
propagate with spatial variation that looks like
*j8 2z

K(X:Y:z) = K(x»}') e m

where the - sign 1s for propagation in the + z direction and the + sign

for propagation along the - z direction. With this understanding, note

that

VxA =348 (zxA )
z mt m t

Using this result in Eqs. A.l1 and A.2,

-juul_ = V. xE ¥ 38_(z Em ) (A.3)
t z t

jueE, =V, xH ¥ i _(zx H_) (A.4)
t z t

Substituting Eq. A.4 into Eq. A.3 to eliminate the transverse component

of E and using the identities
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we obtain

2 2.\= -
(x° - sm)nm = jueV X E_F 38V H (A.5)
t z z
Similarly, we could eliminate the transverse components of H by substi-

tuting Eq. A.3 into Eq. A.4 to obtain

2 2.- -
(x° - Bm)Emt = - juuv, x umz 7 jsmvtsmz (A.6)

2 2
Here, k = w pe. Equations A.5 and A.6 are standard results except that

the ¥ signs are not often included; usually, just the - sign is used for

propagation in the + z direction. This distinction is important for

mode expansions involving propagation in both directions.

In the case of TE modes, E; = 0 and Eqs. A.5 and A.6 reduce to

V4
748
H = L— v _H
mt k2 - B2 t mz
E = —5135175 VH xz (A.7)
t k™ - Bm m,

For T™ modes, H;, = 0 and Eqs. A.5 and A.6 reduce to
z
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- - "}':1
: E =2 vE (A.8) s

These equations show that the axial field component in a cylindri-
cal waveguide plays a role similar to that of a scalar potential in Rt
general EM field theory. The fields in a cylindrical system are com-

» pletely determined once the axial fields are known. ’

Since the electric and magnetic fields are solutions to vector !

wave equations, Egs. 14 and 15, the axial fields must be solutions to

H -
) TE w7
2 . .2 z ot
(Vt + Ym) = 0 (A.9) s
ALY
Emz ™ o

4 2 2 2 :}f" '

; where Yo 2k - Bm. Solutions to Eq. A.9 are subject to the following B

boundary conditions: iy

n-* VHm = 0 for TE c\j{

z [

E = 0 for T™™

l‘, )

~ e
where n 1s a unit normal to the conducting surface of the cylindrical
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Part 2

Normalized mode functions. In Part 1, the basic relatiorships
between field compgnents in a cylindrical system were outlined. The
electric and magnetic mode vectors were denoted by capital letters E and
H, respectively. In this section, a normalization condition is given.
The normalized mode wvectors will be denoted using lower case e and h.
The normalization condition used here is that each mode carry 1 watt
real power above cutoff, and 1 watt reactive (imaginary) power below
cutoff. Explicitly, integrate‘the Poynting vector over the guide cross
section S and enforce the following condition:
¢
1 [W] for both TE and TM modes above cutoff
j [W] for TE modes below cutoff (A.10)

-j [W] for ™ modes below cutoff
\

The change of sign on the reactive power below cutoff reflects the fact
that nonpropagating TE modes appear inductive, while nonpropagating TM
modes appear capacitive.

Using the relations from Part 1, the condition indicated by Eq.
A.10 can be enforced in terms of the axial fields only. For TE modes,

use Eqs. A.7 to obtain

1 [W] above cutoff

*
k8
1l ju m *
-Z—E-——z / hy h ~ds =
Ym S z2 z

1 [W] below cutoff

For TM modes, use Eqs. A.8 yielding
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1 [W] above cutoff
1

€ kB 3
Fl ETI ey en d8 = (A.12)
Yg S 2 2 -} [W] below cutoff

Once the axial modes have been normalized, the corresponding transverse
field components may be found using Eqs. A.7 and A.8.
Arbitrary fields in a cylindrical waveguide can now be written in

terms of the normalized mode functions,

where m ranges over all modes, both TE and TM, above and below cutoff.

The forward-backward arrows 1indicate propagation in the + z and - 2z

directions, respectively.

Part 3

Explicit mode functions for rectangular waveguides. In a rectan-
gular waveguide with cross-section dimensions a and b, the mode func-

tions that satisfy Eq. A.9 with the appropriate boundary condition for

TE modes is
h = A cos Imx cos i 4
z a b
mn
with

m,n = 0, 1, 2, ....; but not both zero
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Using Eq. A.12 for normalization, O

1 / 2 RN
2 )
2vy_ n
mn mn € el
A - > -— ..' ety
mn kB ab ‘¥ iy
mn

where RN

1 [W] above cutoff
j [W] below cutoff Wiy

-'v.r«
G
2 if mornis O "::?,‘:'

mn ;“:& ot
4 otherwise y

For ™ modes, the mode function that satisfies Eq. A.9 with e, = 0 on 4";{"

the boundary is

T
mn a
mn ¢

with XA

1/2 ey
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APPENDIX B

COMPLEX ART

Consider a linear system of equatioms,

Ax = b

Let z(k) be the kth approximation to the solution vector X and note that

the error or residual in the ith equation in the system can be written

G

-
-

Rt

where ai is the ith row vector from the matrix A, and bi the ith element
in the column vector b. The gradient of the residual, steepest descent
direction, can be computed with respect to a change in the approximation

(k)

vector y ,

This says that the gradient of the residual for the ith equation in the
system is the transpose of the ith row vector in the matrix A. Now,
adjust the approximate solution along the steepest descent direction

using the update form

(k+1 k
y )'2(

W' N {‘ | ‘ VY "\' ‘ " vv*‘\ L S R Sl \_'i Y " ‘ %
Y -."‘-,'f\“?' S0 -.ﬁ\ \'.N_,\\$ _,."' \'._.\,.\\,, J_‘J\»J._.r I AANOT AT AT ,’
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i ¢
s :"
K 1]
& The scalar ak is chosen to make ry zero. This gives the condition s&‘
:: el
" (k) T :
1" = - - g
: 0 =3 [1 % 8 ] by i
5! : \
§ '-
Solving for a,» e have _
Y ‘ b g
Yy )
h Vo
. rk) R
b T o
L -1 gi
N The basic ART update for real systems of equations is then ;
" Rt e
Y
bl ."..
o L) T R
' k+1 k i =1 B
S S L S -3 (B.1) .
, 21 34 «§
y Note that ART adjusts every element in the solution vector for each hﬁ*
¥ W
equation. When Eq. B.l1 has been enforced for every equation in the -
RS
P
j system, a complete update has been accomplished. Usually, several ::
y ~
; updates are required, but if the system has a unique solution, then 5N
't‘ .
’b lim (l(k) - §) - 0 &‘ ¢
' k+w )
D g Q"
f N

Any n by m complex system of equations can be written as a 2n by 2m real

[ YA
$ system to which Eq. B.l can be applied directly. Alternatively, update "

X e
s formulae equivalent to Eq. B.l can be derived which apply directly to :{;vj
't )

complex systems. For A x = b a complex system, decompose the complex

]

Y
L]
g

» residual into its real and imaginary parts,
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Then the update that makes a, zero is AT ¢

1 AN,
S
a(k) a+
k+1 k i =1 g
g oy - (B.2) it
21 e1 ..':'. |::
J
'.':':::::
The update making 8i zero 1is .ty
‘ \Ii’ '
(k) T " ..“.‘
(1) _ () _ P12 D
y =y - y (B.3) ey
%1 % :::'.u':!:
where the following notation applies: }33&
.‘?&
o
Q‘*\
T ;:\ ~
a, the transpose of a, W
-’.$$\
a+ ¢ the conjugate transpose of a '*“i;:
=i =1 AR

Equations B.2 and B.3 are applied by computing the real part of the

-,
X
o

%
)

e

-
-

-.
7

residual for equation i, a then enforcing Eq. B.2. Next compute the

1!

-
-

imaginary part of the residual for equation i, Bi’ and enforce Eq. B.3.

]
-

A variant on this algorithm that I call new ART or NART applies to

.

AT iV i i S S P
{\\,}?
g‘ LR

) systems where the diagonal element is larger in magnitude than other

elements in the same row. This update changes only the ith component

LTS P

of y when applied to the ith equation, rather than all the elements ;:,:
' -‘ -.

S

in y. The NART update formulas corresponding to Eqs. B.2 and B.3 are ::;2
ey

W
o

‘s %

Y

>

_‘»J'.';f','u ¢ R
« 1

° %y
e

7" e

55

;4
el
SRS
{ , .’ ’

- 56 -

5
[
5

2

!

<

TR AT e NN AT AT LU R T AT (e ot R T L S S e N L W N WL R
Y "'~"t$:' s RSO :‘: AN AR :g\.‘v\p: :bﬁ\.f.‘_j.'-_.‘_:.,:. N NI AT AR
o 3 A A BN W o " " O ORI L0
..i.. ) \ il "ﬂ"‘". . ﬂ. ‘ o~‘ ‘ ’. \ !.n \' \ J. W i¢ . Lo N '\J‘ o

Xl Fy
_ :%:f.. (:":-"\‘::'-

£l i)



(k) *

(k+1) _ (k) _ 21 %44
vy =y, r
5%

B(k)
y§k+1) ) yik) _

1 844
+

(B.4)
8 &

where the elements of A are [aij]' Equations B.4 no longer reduce the

ith residual to zero at each update, but in many cases this update

scheme converges in fewer iterations and it costs less per iteration.

£

o

NART 18 the update scheme used by subroutines ARTA and ARTB in this

report.
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APPENDIX C

FORTRAN FOREVER

This appendix gives documentation for the three Fortran codes used
to test the formulation presented in Section III. These codes are of no
immediate value, but they are included here to demonstrate work success-
fully completed and also because they may be useful for showing how such

computations may be organized.

Program rspec.f

This program allows for the specification of arbitarary rectangles
in three dimensions. First, the plane of the rectangle is specified by
a point in the plane, ;l

to the plane, n. Here, the term outward means outward with respect to

, and by the direction of the "outward"” normal

the volume that is enclosed by the rectangles. The equation of the

plane is given by all points x such that x * n = ;1 * n, or more explic-

itly by

-

nx + n,y + nyz = n * x; (C.1l)

- ~ -~ ~

where n = n x + n,y + n,z. The second vertex of the rectangle x

can
1

2
now be specified using only two of its three components. Since specify-

ing two of the three variables in Eq. C.l completely determines the

third variable, we can write the triplet of points as:
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t P - .’:'C::
W . - - ]
d [(n x, - 0,5, n322)/n1, Yy 22J for n; > n,, n, "f:.""
N L'k
‘l' -~ 3‘:}
) e = - - o
::( [xz (n x, - nx, n3zz)/n2, 22] for n, > n, Ny *‘)“s{
":! 0! y
N [xz, Yy (n - X, 0%, - nzyz)/n3] for ny > n;, n, (C.2) "
4 o
R 3
3:. The three forms above are entirely equivalent except when nys Ny, OF N, , ‘o:
[ 34 3%,
o % A
are zero. To avoid division by zero, use the appropriate version of Eq. Sin
1 .. -~ 'y \ A
{ C.2; note that at least one component of n is not 0, since ln' = 1. The :E:':
[} )
L) ...
E surface primary direction can now be defined using "'1:2
L/ :’-’:
] ‘-‘ - ~ ~ ~ \:.’\ 3
o pP= (xl - xl)x + (yz - yl)y + (2, - zl)z (c.3) RoAY
*( '.'J\-"

"
3

% nind
2 - A
The third vertex x4 can now be specified by entering just one of its —
[y ' Re
iy F‘._..
: three components, since it must lie in the plane and on a line perpen- 'E,‘
: e
i - - - - 9 \v’f
# dicular to p, i.e., s * p = 0, where s 1s the secondary direction given ;-‘:
: RINYS
by .
A
)
; P
) - - - - f\'}.
‘r. s = (x3 = xl)x + (Y3 - yl)y + (23 = zl)z (C.4) ::_:
e X
‘,. Enforcing this condition, we have for each of the three cases in Eq. » ',!
1t v
N C.2: ot
N N
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s
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Case 1, n; > Ny, N4

ay3 + bz, = ¢

where
8=y, =y = ny(x, - x))/m
b = 2, -2z - n3(x2 - xl)/nl
c= [xl -n n.cl/nl](x2 - xl) + yl(y2 - yl) + zl(z2 - zl)
If ,a' > ‘b,, use y, = (c/a) - (b/a)z3, enter 24, evaluate Yqs then use

Eq. C.1 to find x,, otherwise use zy = (c¢/b) - (a/b)y3, enter y3, evalu-

ate z3, then use Eq. C.1l to find Xqe

Case 2, n, > ny, ng

ax, + bz_ = ¢

where

am= xz - x1 - nl(y2 - yl)/n2
b=z, -z -nyy, -y,

cC = xl(x2 - xl) + [yl -n e ;l/nz](y2 - yl) + z](z2 - zl)

)
i%;?fi‘
L=

Ay, N, ey
[
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If 'a, > ,bl, use x5 = (c/a) - (b/a)z3, enter z,, evaluate X3, then use L .':
Eq. C.1 to find y3» otherwise use zy = (c/b) - (a/b)x3, enter x3, evalu-

3 '!";“!
ate zj3, then use Eq. C.l1 to find y3° o]

Case 3, n, > ny, N, ':lﬂl;

ax +by3-c

where
a=x,-x ~n/fz, -2z )/n l%
2 1 1V72 17773 \.'

b=y, =y~ “2(22 - z1)/“3

oE
MM S
{<

-3

c = x(xy = x)) +y,(y, - )+ [z, - n- ;1/“3](22 - z))

v

: “f&“?"

v

1f |a| > Ibl, use x, = (c/a) - (b/a)y3, enter y3, evaluate X3, then use

» ¢

-~
PN

X0
Sk

ey
LN

Eq. C.1 to find zj, otherwise use y3 = (c¢/b) - (a/b)x3, enter Xg, evalu- N
ate Y3» then use Eq. C.1 to find Z3. e
RN,
AL A
This method of rectangle specification requires a minimum amount ot
‘.'\:_'.
of input from the user, thereby avoiding specification errors. :J‘:J':

Note that the rectangle vertex information should be ordered so .

A a oA . . [

- ()
that p x s = n, where p and s are unit vectors in the directions p and .\?‘f .
- PR
s from Eqs. C.3 and C.4. Any point on the rectangular surface can now \".'".f
be described by the local coordinates (p,s). The transformation from ::-5. W
XS xj
the local system to the absolute point x is accomplished by :x':"r
l‘h §
- 'y
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‘ X =X, + pp + 88 for p€fo, o] (C.5) : .:,ﬁ::

where \ %

D= |x, - x X, = X
P

2 (C.6)

For the final output record rspec.f stores the following informa- 5“‘}\'

tion about each rectangle: '

_ A A & o
Xy» 0 Py 8, Doy Ny N Y
WVEOANY

LI Al
L]
-I
A

where Dp and Ds are the primary and secondary edge lengths from Egs.

i‘l .

C.6, and Np and N are the number of primary and secondary subdivisions

5l
4
e

along each edge.
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PROGRAM RSPEC

This program allows you to specify arbitrary rectangles in three
dimensions. First the plane of the rectangle is defined by the
"outward® normal direction and the coordinates of the first vertex,
Vi. Next the program will ask you to give the two coordinates need-
ed to specify the second vertex, V2, on the defined plane. Finally
you will be ask to enter the single remaning coordinate required

to specify the third vertex, V3, along the normal to Vi-V2, through
Vi, and on the defined plane. From this data the primary and second-
ary unit directions are computed for later use by surface integra-
tion routines.

REAL V1(10,3),UN(10,3),UP(10,3),US(10,3),DP(10),DS(10)
INTEGER NP(10),NS(10)

WRITE(6,*) ‘Enter the number of rectangles to be specified.’
READ(S,*) NR

WRITE(6,*) 'Enter the number of conducting rectangles out of total.’
READ(S5,*) NRC

WRITE(6,*) 'Specify the conducting rectangles first.'
DO 100 I=1,NR

WRITE(6,*) * °

WRITE(6,*) ‘Data entery for rectangle number *',I,'.‘
WRITE(6,*) 'Enter normal direction, Nx,Ny,Nz.'
READ(S5,*) X,Y,2

D=SQRT(X®*2+YX*24Z%x%x2)

UN(I,1)=X/D

UN(I,2)=Y/D

UN(I,3)=Z/D

WRITE(6,%) ‘Enter first vertex, X1,Y1,Z1.°
READ(S5,*) X1i,Y1,21
DeX1*UN(I,1)+Y1*UN(I,2)+Z1*UN(I,3)

Test for free variables.
XN=ABS(UN(I1,1))

YN=ABS(UN(I,2))

ZN=ABS(UN(I,3))
IF((XN.GE.YN).AND.(XN.GE.ZN)) GOTO 60
IF((YN.GE.XN).AND.(YN.GE.2ZN)})) GOTO 30

Case 1. N3 > N1l and N2 .

WRITE(6,*) 'Enter X2,Y2.'

READ(5,*) X2,Y2
22=(D=-UN(I,1)*X2-UN(I,2)%Y2)/UN(I,3)
UP(I,1)=X2-X1

UP(I,2)sY2-Y1

UP(I,3)=22-21
A=UP(I,1)-UN(I,1)*UP(I,3)/UN(I,3)
B=UP(I1,2)-UN(I,2)*UP(1,3)/UN(I,3)
CoX1*UP(I,1)+Y1*UP(I,2)+(21~-D/UN(I,3))*UP(I,3)
IF(ABS(A).GT.ABS(B)) GOTO 10

WRITE(6,*) 'Enter X3.'
READ(S5,*) X3
Y3=C/B-(A/B)*X3
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GOTO 20 R

10 WRITE(6,*) ‘'Enter Y3.' 2
READ(S,*) Y3 o
X3=C/A-(B/A}*Y3

20  Z3=(D-UN(I,1)*X3-UN(I,2)*Y3)/UN(I,3) Ay

GOTO 90 A
W,
C Case 2. N2 > N1 and N3 . u}g:
30 WRITE(6,*) ‘Enter X2,22.° e
READ(S,*) X2,22 )
Y2=(D-UN(I,1)*X2-UN(I,3)*22)/UN(I,2) r -
UP(I,1)=X2-X1 bl
UP(I,2)=Y2-Y1 Rt
UP(I1,3)=22-21 séﬁ
A=UP(I,1)=-UN(I,1)*UP(I,2)/UN(I,2) A
B=UP(I,3)-UN(I,3)*UP(I,2)/UN(I,2) Ty
C=X1*UP(I1,1)+Z1*UP(I,3)+(Y1-D/UN(I,2))*UP(1,2) Qﬁ':
IF(ABS(A).GT.ABS(B)) GOTO 40 ?~ﬂq
)] *s .E
WRITE(6,*) 'Enter X3.' RaNe
READ(5,*) X3 =
Z3=C/B-(A/B)*X3 7
GOTO S0 RONP:
AN
40 WRITE(6,*) ‘'Enter 23.' e
READ(S,*) Z3 NN,
X3=C/A-(B/A)*23 AR
" .. >
~ S0  Y3=(D-UN(I,1)*X3-UN(I,3)*Z3)/UN(I,2) h?x“
. GOTO 90 poded
PJoc
C Case 3. N1 > N2 and N3 . BQQE
60 WRITE(6,*) ‘Enter Y2,22.° .
READ(S,*) Y2,22 5T

X2=(D-UN(I,2)*Y2-UN(I,3)*Z2)/UN(I,1) oA

UP(I,1)=X2-X1 {hﬁw
UP(I,2)eY2-Y1 OO
UP(1,3)=22-21 PN
A=UP(I,2)-UN(I,2)*UP(I,1)/7UN(I,1) I

B=UP(I,3)-UN(I,3)*UP(I,1)/UN(I,1)
CeY1*UP(I,2)+Z1*UP(I,3)+(X1-D/UN(I,1))*UP(I,1)
IF(ABS(A).GT.ABS(B)) GOTO 70

WRITE(6,*) ‘Enter Y3.'
READ(5,%) Y3

Z3=C/B-(A/B)*Y3 NI
GOTO 80 AP

pY, k0

’\(n- .'

70 WRITE(6,*) 'Enter 23.° hohnte
READ(S,*) 23 T

Y3=C/A-(B/A)*2Z3 ‘

80  X3e(D-UN(I,2)*Y3-UN(I,3)*Z3)/UN(I,1) P
P PR

T Tk
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o
R ’ ty
:',' c Compute unit directions and distances. 'n';:
N 90 DP(I)=SQRT(UP(I,1)%x22+4UP(I,2)**2+UP(I,3)**2) X
h UP(I,1)sUP(I,1)/DP(I) N
o UP(1,2)=UP(1,2)/DP(I) oo
UP(I,3)=UP(I,3)/DP(I) ,
e US(I,1)=X3-X1 o]
o US(I,2)=Y3-Y1 XN
S US(I,3)=23-21 )
& DS(I)*SQRT(US(I,1)%%24US(I,2)**2+4US(I,3)x*2) bty
" US(I,1)=US(I,1)/DS(I) AN
US(I,2)=US(I,2)/DS(I)
o0 US(I1,3)eUS(I,3)/DS(I) A
a Vi(I,1)=X1 e
" Vi(I,2)=Y1 s
5‘ Vi(I,3)=21 e
“ &
: WRITE(6,*) ‘'Enter the number of primary subdivisions, NP.' S
@ READ(5,*) NP(I) Ay
) WRITE(6,%) 'Enter the number of secondary subdivisions, NS.° t:: A
< READ(5,*) NS(I) ..:
3 c Error alowance, in case of incorrect data entry. “
"; WRITE(6,*) 'If data entry was incorrect type "0", otherwise "1".° s
= READ(S5,*) NANS "
! IF(NANS.EQ.0) GOTO S 5,
! 100 CONTINUE Qh
N Wt
g::' c Store point data. T
h OPEN(10,FILE~'rec.dat' ,STATUS='unknown') o
REWIND(10) ,
§ WRITE(10,*) NR,NRC N
N DO 110 I=1,NR N
" WRITE(10,*) (V1(I,J),J=1,3) 2N
2 WRITE(10,*) (UN(I,J),J=1,3) rl);
N WRITE(10,*) (UP(I,J),J=1,3) o
WRITE(10,*) (US(I,J),J=1,3)
N WRITE(10,*) DP(I),DS(I),NP(I),NS(I) DAY
N 110 CONTINUE N
- CLOSE(10) .
.\. \-.,:-
:-; Cc Test, compute vertices from data as a check. :{:
DO 120 I=1,NR :
; WRITE(6,*) I AL
"y WRITE(6,*) (V1(I,J),J=1,3) 2=
e X2=V1(I,1)+DP(I)*UP(I,1) P
O Y2=V1(1,2)+DP(I)*UP(I,2) ﬁk
K 22+V1(1,3)+DP(I)*UP(1,3) AT
. WRITE(6,*) X2,Y2,22 . .
b X3=V1(I1,1)+DS(1)*US(I,1) R
N Y3eV1(I,2)+DS(I)*US(I,2) ﬁﬁﬁ
o Z3sV1(1,3)+DS(1)*US(I,3) ﬂg
" WRITE(6,*) X3,Y3,23 o
« 120 CONTINUE e
I\ P N
STOP 'End of run.' N
- END )
b - 65 - e
b i
R e
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Program DoJob.f . .,::.;
u\ ‘|,
DA
This program reads the geometrical data from file rec.dat as set
el
: up by program rspec.f and generates the patch coupling coefficients :Ef
H » ¥
> oy
needed to form a linear system of equations. The numerical integrations - :
herSe
are performed using Gaussian quadrature rules. Two-dimensional integra- -
A
tions are estimated by combining two one-dimensional 1integration ;j? M
w  n "
W,
N schemes, one embedded inside the other. The arbitrary interval formula, .‘- X
b ¢
Eq. 25.4.30 from Abramowitz and Stegunl® was used. .
'E"'-A"
The primary program variable definitions are: . :,-:
»::‘-ﬁ‘-
)'...!.:
™
A Test point, loop index. Integer value. Used o
, for counting and ordering rectangles. j'.::-.:j::
_;.r\‘_.f‘
c Evaluation loop index. Integer value. Used for :::f.
.:'\--
ordering either conducting or field boundary RRARAR
rectangles, but not both in a given Do loop. :.f:‘:{
RS )
V1(A,I) Absolute (x,y,z) position of vertex 1 on rect- -\.1::‘,_:
"-‘.\‘*\
.
angle A. I = 1,2,3 for x,y,z components, "':(\ “
respectively. hRosR
RN
UN(A,I), UP(A,I) Unit vector directions n, p, and s, respec- -:;'_-:'.“-:
Us(A,I) NNy
P,
tively. AN
DP(A), DS(A) Distance primary and secondary, D, and D_, for
rectangle A.
NP(A), NS(A) Number of primary and secondary subdivisions of
rectangle A. "'
MODES(C) Number of modes on field boundary C. S
PR
N
AR
WA
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XT(1), XI(I)

TSI(1), W(I)

TS(I1), V(I)

PHI

GPHI(I)

H(I)

N,
o

RN AN

ul"

L] N. L \1'.:
*- (\»~’..‘ ..' .

Test position and evaluation position vari-
ables. I = 1,2,3 for x,y,z components of posi-
tion. Position 1is computed in terms of 1local
surface coordinates using Eq. C.5.

Test point and weight values for 8 point
Gaussian quadrature. Used for numerical approx-
imation of self term coupling coefficients. 1 =
1, 2, «e., 8.

Test point and weight values for 3 point
Gaussian quadrature. Used for computing all
coupling coefficients except the self term
value. 1 =1, 2, 3,

Complex scalar. Numerical value for 0(;,;')
from Section III. Computed by subroutine GREEN
and depends only on wavelength and distance
between x and x'.

Complex vector. Numerical value for VQ(;,;')
from Section III. Computed by subroutine GREEN.
I1=1,2,3 for x,y,z components, respectively.
Complex vector. Numerical value for E[i,n] or
E[i,n] from Section III. Computed by subroutine
TEMO for TEyo modes in a rectangular waveguide.
Depends on local field boundary position p,s,
the mode number M, and on N = 1,2 for +,+ direc-
tions, respectively. I = 1,23 for p,s,n direc-

tion components.
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Complex vector. Same as H(I) except converted
to x,y,z directions by the transformation:

ZH(I) = R(1)UP(I) + H(2)US(I) + H(3)UN(I);
I1=1,2,3

Complex vector. Numerical value for 3/3n ;[1,n]
from Section II1. Also computed by subroutine
TEMO.

Complex vector. Related to HN(I) in the same
way ZH(I) is related to H(I).

Complex scalar. Used to compute and store
numerical value for

f ¢ da
fc,kl] [a'ijl

Complex scalar. Used to compute and store

numerical value for

[n e 90(5,45)] @0

[e,kl]

Complex vector. Used to compute and store

numerical value for

a

3 -
SR LRI R LIRS Il T PPPRI LI
C

>

.....w
T
PN X,

.ND
Py

AR
I)~f Pl
-.,-.;.}\.)s

G o 4

T T
>
e,

‘l

-
S

'I‘;l

RV =
<
[N

RN
Pd
N

v

\.’
[N
NS

5?

o




-

-

."'-‘

h
o -

&,

Program DoJob

IMPLICIT COMPLEX (2)

INTEGER A,C,NP(10),NS(10),MODES(2)

REAL V1(10,3),UN(10,3),UP(10,3),US(10,3),DP(10),DS(10)
REAL XT(3),XI(3),w(8),TSI(8),V(3),TS(3)

DIMENSION ZF(3),2F1(3),ZFO(3),ZH(3),ZHN(3)

COMPLEX GPHI(3),PHI,H(3),HN(3)

ST
GO
O

o

COMMON AA,BB,AK
DATA TPI / 6.283185308 /
DATA SMALL / 2.5E-07 /

Initialize W and TSI arrays for 8 point Gaussian quadrature.
TSI(1)=-0.9602898565

TSI(2)=-0.7966664774

TSI(3)=-0.5255324099

TSI(4)=-0.1834346425

TSI(S)=-TSI(4)

TSI(6)==-TSI(3)

TSI(7)=-TSI(2)

TSI(8)=-TSI(1)

W(1)=0.1012285363
W(2)=0.2223810345%
W(3)=0.3137066459
W(4)=0.36268378234
W(S)=W(4)
W(6)=W(3)
W(7)=W(2)
W(8)=sW(1)

- o {.I n‘.r L
. . »'i.' "" ’
LA 4'(515 .

Initialize TS array for 3 point Gaussian quadrature.
TS(1)=-0.7745966692

TS(2)=0.0

TS(3)=-TS(1)

l"F'J

RN
Ay Aty Ay e N

PR

£
."!l'l'i'
.-

V(1)=20.5555555556
V(2)=0.8888888889
V(3)=v(1)

v

; ’ 7
! “c

;¥-’ Gl ¥ & f"‘(
,4Q55
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Read rectangle specification data as generated by rspec.f
OPEN(10,FILE='rec.dat' ,STATUS='0ld")
REWIND(10)

READ(10,*) NR,NRC

DO 10 Ie1,NR

READ(10,*) (V1(I,bJ),J=1,3)
READ(10,*) (UN(I,J),J=1,3)
READ(10,*) (UP(1,J),J=1,3)
READ(10,*) (US(I,J),J=1,3)
READ(10,*) DP(I),DS(I),NP(I1),NS(I)
CONTINUE

CLOSE(10)

¢y
s

y l?"‘?

VAALL NS

e -
gfaﬁﬁ
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h
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Open file for vector coupling coefficients.
OPEN(10,FILE="'green.dat’' ,STATUS='unknown')
REWIND(10)

2
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C Enter run data.
WRITE(6,*) ‘Enter ratio: working wavelength / cutoff wavelength.'
READ(S,*) RATIO
. AK«TPI/RATIO
‘ WRITE(10,*) RATIO

Cc Enter number of TE-MO modes at each field plane.
NFB=NR-NRC
WRITE(10,%) NFY
‘ DO 18 I=-1,NFB
WRITE(6,*) * °
WRITE(6,*) ‘For field plane number',I,','
WRITE(6,*) 'Enter the number of TE modes.'
READ(S,*~) MODES(I)
\ 15 CONTINUE
WRITE(10,*) (MODES(I),I=1,NFB)

; c Test point loop over rectangular boundaries.
! DO 530 A=1,NR
WRITE(6,*) ‘Doing work for rectangle number' ,A,"‘'.’ s
5 HXX=DP(A)/FPLOAT(NP(A)) s
¢ HYY=DS(A)/FLOAT(NS(A)) L)
-_.'..,
| Cc Test point loops over patches on rectangle A. "';:;ﬁ
DO $30 I=1,NP(A) N
XXeHXX*(FLOAT(I)-0.5)
DO 530 J=1,NS(A) "
YY=HYY* (FLOAT(J)-0.9) Ty
; oy
c Compute position of test point. AT
' DO 20 II=1,3 O]
XT(IX)=V1(A,II)+XX*UP(A,II)+YY*US(A,LII)
K 20 CONTINUE S
D r ‘ ':|
X c Evaluation loop over conducting rectangles. P:|'
' DO 170 C=1,NRC DN
X HX=DP(C)/FLOAT(NP(C)) k’,,

HY=DS(C)/FLOAT(NS(C))
F=HX*HY/4.0

-

K c Evaluation loops over patches on rectangle C.
DO 170 K=1,NP(C)
XeHX* (FLOAT(K)~0.5) e
: DO 170 Lei ,NS(C) e
. Y=HY*(FLOAT(L)-0.5)

. f:‘J‘
c Initialize inteqgration vector. R
‘ 2G=CMPLX(0.0,0.0) P
. ZGN=CMPLX(0.0,0.0) ’xsc
c Test for self term; or common patches. _
' SUM=0.0 ‘..\".\
' DO 40 11e1,3 NN
; XI(II)eV1(C,II)+X*UP(C,II)+Y*US(C,II) RO
SUMeSUM+(XT(II)-XI(II))*=x2 y:
40  CONTINUE Ny
IF(((A.EQ.C).AND.((K.EQ.I).AND.(L.EQ.J))).OR. (SUM.LT.SMALL)) THEN
e
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s
' c Do self term integration using 8 by 8 point Gaussian scheme.
3 DO 90 M=1,8 N
b AXeHX*TSI(M)/2.0+X 2
4 ZG1=CMPLX(0.0,0.0) ar,
o N
" DO 70 N=1,8 ey
AY=HY®TSI(N)/2.0+Y
b DO SO0 IXe1,3 "0
g XI(II)=V1(C,II)+AX*UP(C,II)+AY*US(C,II) =~
" $0 CONTINUE oy
? CALL GREEN(XT,XI,PHI) 53
) ZGI=ZGI+W(N)*PHI e
. 70 CONTINUE
W v
2G=ZG+W(M)*2ZGI i
y 90 CONTINUE 2
d o
. ELSE e
) Cc Do integration using 3 by 3 point Gaussian scheme. .
& DO 150 M=1,3 A
A AXsHX*TS(M)/2.0+X 0N
\ ZGI=CMPLX(0.0,0.0) T
Ry ZGNI=CMPLX(0.0,0.0) R
.'! ;‘i:"
' DO 130 N=1,3
2 AY-HY®TS(N)/2.0+Y Ly
v DO 110 Ile-1,3 R
) XI(II)=V1(C,II)+AX*UP(C,II)+AY*US(C,II) N
. 110 CONTINUE N
CALL GREEN(XT,XI,PHI) o
CALL GGREEN(XT,XI,GPHI)
N ZGI=ZGI+V(N)*PHI NN
o~ Z=CMPLX(0.0,0.0) e
. DO 120 II=1,3 %
e Z+Z+UN(C,II)*GPHI(1I) ol
120 CONTINUE N
. ZGNI=2GNI+V(N)*Z N
R 130 CONTINUE w2
P 2ZG=2ZG+V(M)*2GI A
. ZGN=2ZGN+V (M) *ZGNI e
! 150 CONTINUE A
ENDIF
‘N PN
AV
2G=Fx2G ":..'-
W ZGN=F*2GN i
" WRITE(10,*) ZG,ZGN RN
U 170 CONTINUE A
Y. c Evaluation loop over field boundary rectangles. '?{'
' DO 350 C=(NRC+1),NR v
- AA=DP(C) S
R BB=DS(C) R
. HX=AA/FLOAT (NP(C)) NN
HY=BB/FLOAT(NS(C)) .
v F=HX*HY/4.0 RO
s R
) -7 - T




Evaluation loop over modes,
IC=C~NRC
DO 350 MM=1,MODES(IC)

Initialize integration sum.
DO 190 I1l=1,3

ZF(II)=CMPLX(0.0,0.0)
CONTINUE

Start summing loops over patches on field boundary C.
DO 340 IA=}1 ,NP(C)

X=HX*(FLOAT(IA)-0.5)

DO 340 JA~1 NS(C)
YeHY* (FLOAT(JA)-0.5)

Initialize patch integration.
DO 200 II=-1,3
ZFO(I1)=CMPLX(0.0,0.0)
CONTINUE

Test for self patch.
IF((A.EQ.C).AND.((I.EQ.IA).AND.(J.EQ.JA))) THEN

b T T
P
)

%

Do self term integration using 8 by 8 point Gaussian scheme.
DO 260 Me«1,8 R
AX=HX*TSI(M)/2.0+X AL

DO 210 II=1,3 e
ZFI(11)=CMPLX(0.0,0.0) RN
CONTINUE e

DO 240 Nei,8 g
AY=HY*TSI(N)/2.0+Y s

DO 220 II=1,3 b
XI(II)eV1(C,II)+AX*UP(C,II)+AY*US(C,II) RN
220 CONTINUE AW
a1
C Evaluate the {ntegrand. NN
CALL GREEN(XT,XI,PHI) RS
CALL GGREEN(XT,XI ,GPHI) AN
CALL TEMO(AX,AY,AA,BB,RATIO,2,MM,H, HN) R
Z=CMPLX(0.0,0.0) A
DO 230 Ile1,3
Z=Z+UN(C,ITI)*GPHI(II) TR
ZH(II)=H(1)*UP(C,II)+H(2)*US(C,ITI)+H(3)*UN(C,II) N
ZHN(II)=HN(1)*UP(C,II)+HN(2)*US(C,II)+HN(3)*UN(C,II) S
230 CONTINUE O
DO 235 II=1,3 R,
ZFI(II)eZFI(IT)+W(N)*X(PHI*ZHN(II)-2*ZH(II)) ol
235 CONTINUE SRS
240 CONTINUE LY
N,
DO 250 II=1,3 NN
ZFO(I1)=2FO(ITI)+W(M)*ZFI(II) N
250 CONTINUE .
260 CONTINUE ;:::;‘;:
- 72 - )
PN
A
AL R AT O 4 L 0t ORI AR PR PN _‘l{.‘..x A 07 8" ._t..‘- .A--.. . ..~.,- ATARS LA TP ,\-._\- "q‘\- CORRTA TR S
&?E‘ﬂ'ﬁ :ﬁ:ﬁ:*:i:i:;ﬁ;??-::f-:::;r.;;;:i*_;"‘vﬁ--',--:--'.; R N Ry e Aot

‘e >
ENA nIA TS A Oy




P R O P T P I TR DY TR O O . T e 3 B O R RN T U R W¥ U ¥ PSR Or FOr POV FOT FOr RN PO ™

270

280

290

295
300

310
320

330
340

350

370

ELSE

Do integration using 3 by 3 point Gaussian scheme.
DO 320 M=-1,3
AX=HX®*TS(M)/2.0+X

DO 270 II-1,3

ZPI(I1)=CMPLX(0.0,0.0)

CONTINUE

DO 300 Ne1,3
AY=HY*TS(N)/2.0+Y
DO 280 II=1,3
XI(II)=V1(C,II}+AX*UP(C,II)+AY*US(C,6II)
CONTINUE

Evaluate the integrand.

CALL GREEN(XT,XI,PHI)

CALL GGREEN(XT,XI,GPHI)

CALL TEMO(AX,AY,AA,BB,RATIO,2,MM,H, HN)
Z=CMPLX(0.0,0.0)
DO 290 Ile1,3
Z=Z+UN(C,II)*GPHI(II)
ZH(II)=H(1)*UP(C,II)+H(2)*US(C,II)+H(3)~UN(C,II)
ZHN(II)=HN(1)*UP(C,II)+HN(2)*US(C,ITI)+HN(3)*UN(C,II)
CONTINUE
DO 295 I1-1,3
ZFI(II)=ZFI(II)+V(N)®(PHI*ZHN(II1)=-Z*ZH(II))
CONTINUE

CONTINUE

DO 310 II=1,3
ZFO(II)=ZFO(II)+V(M)*ZFI(II)
CONTINUE
CONTINUE
ENDIF

Sum up values from each patch integration.
DO 330 I1-1,3
ZF(II)=2F(11)+F*ZFO(II)
CONTINUE
CONTINUE

WRITE(10,*) (ZF(II),Il=1,3)
CONTINUE

v e
.Y

e

Compute forcing term for each test point.
C=NRC+1

AA=DP(C)

BB=DS(C)

KX=AA/FLOAT(NP(C))

HY=BB/FLOAT(NS(C))

FeHX*HY/4.0

[4

TN
wTole
X

X/
b

5

'393;
oy
Y,

L/
“h Y
s

I'4
e
A eSS

Inftislize integration sum.
DO 370 11=1,3
ZF(11)=CMPLX(0.0,0.0)
CONTINUE

’
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C Start summing loops over patches on field boundary C.
DO 520 IA=1,NP(C)
XeHX* (FLOAT(IA)-0.5)
DO 520 JA=1,NS(C)
YeHY*(FLOAT(JA)-0.5)

C Initialize patch integration.
DO 380 II=1,3
ZFO(11)=CMPLX(0.0,0.0)

380 CONTINUE

o Test for self patch.
IF((A.EQ.C).AND.((I.EQ.IA).AND.(J.EQ.JA))) THEN

C Do self term integration using 8 by 8 point Gaussian scheme.
DO 440 M=1,8
AX=HX*TSI(M)/2.0+X
DO 390 Il=1,3
ZFI(I1)=CMPLX(0.0,0.0)
390 CONTINUE

DO 420 N=1,8
AY=HY*TSI(N)/2.0+Y
DO 400 II=1,3
XI(IT)=V1(C,IT)+AX*UP(C,II)+AY*US(C,II)
400 CONTINUE

o Evaluate the integrand.
CALL GREEN(XT,XI,PHI)
CALL GGREEN(XT,XI,GPHI)
CALL TEMO(AX,AY,AA,BB,RATIO,1,1,H,HN)
Z+CMPLX(0.0,0.0)
DO 410 II-1,3
ZeZ+UN(C,II)*GPHI(II)
ZH(II)=H(1)*UP(C,II)+H(2)*US(C,IT)+H(3)*UN(C,II)
ZHN(II)=HN(1)*UP(C,II1)+HN(2)*US(C,II)+HN(3)*UN(C,II)
410 CONTINUE
DO 415 I1=1,3
ZFI(II)=ZFI(II)+W(N)*(PHI*XZHN(II)-Z*ZH(II1))
415 CONTINUE
420 CONTINUE

DO 430 II-1,3
ZFO(II)=ZFO(II)+W(M)*ZFI(II)

430 CONTINUE
440 CONTINUE
ELSE
C Do integration using 3 by 3 point Gaussian scheme.

DO S00 Me1,3
AX<HX*TS(M)/2.0+X
DO 450 1I=1,3
ZFI(I1)=CMPLX(0.0,0.0)
450 CONTINUE

DO 480 N=1,3
AY=HY*TS(N)/2.0+Y
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W
DO 460 II=1,3 B
XI(IX)=V1(C,II)+AX*UP(C,II)+AY*US(C,II) —_
CONTINUE g
AZNY
Evaluate the integrand. :tvé
CALL GREEN(XT,XI,PHI) G
CALL GGREEN(XT,XI,GPHI) EDENY,
CALL TEMO(AX,AY,AA,BB,RATIO,1,1,H,HN) ]
Z=CMPLX(0.0,0.0) i
DO 470 Il=1,3 LN
Z=Z+UN(C,II)*GPHI(1I) o
ZH(IX)=H(1)*UP(C,II)+H(2)*US(C,II)+H(3)*UN(C,II) o
ZHN(II)=HN(L)*UP(C,II)+HN(2)*US(C,II)+HN(3)*UN(C,II) 9, WA
CONTINUE
DO 475 Il«1,3 T
ZFI(II)=ZFI(II)+V(N)*(PHI*ZHN(II)=Z*ZH(II)) Ry
CONTINUE W
CONTINUE : o
rlo
DO 490 Il=1,3 o
ZFO(II)=ZFO(II}+V(M)*ZFI(II) o
CONTINUE i
CONTINUE ‘ N
ENDIF \.::\:
o
Sum up values of patch integrations. » T
DO 510 II=1,3 e 8
ZF(II)=2F(II)+F*ZFO(II) PR
CONTINUE el
CONTINUE i
I'.:-f:'u
WRITE(10,*) (ZF(II),II=1,3) 20
CONTINUE ' -
ALY
Compute and store magnetic field variation on field rectangle C. LN
DO 550 C=(NRC+1),NR oy
AA=DP(C ) ‘,,:".yn\'
BB=DS(C) )
HX=AA/FLOAT(NP(C)) -- 9
HY=BB/FLOAT(NS(C)) are]
R
Loop over modes. N

IC=C-NRC o~

o
DO $50 MM=1,MODES(IC) NP
Loops over points on rectangle C. hAS
DO 5§50 IA=1,NP(C) Fﬁ%
XeHX* (FLOAT(IA)=~0.5) (.':\."',.5
DO $50 JA=1,NS(C) el
YeHY*(FLOAT(JA)~0.5) s

CALL TEMO(X,Y,AA,BB,RATIO,2,MM,H,HN)

DO 540 1I=1,3
ZH(II)=H(1)*UP(C,II)+H(2)*US(C,II)+H(3)*UN(C,II)
CONTINUE

WRITE(10,%) (ZH(II),II=1,3)

CONTINUE
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e c Compute and store incident magnetic field variation. A

0 C=NRC+1 e

K AA=DP(C) \

D BB=DS(C)

" HX=AA/FLOAT(NP(C)) )
HY=BB/FLOAT(NS(C))

i

9 C Loops over points on rectangle C. 4

o DO 570 IA=1,NP(C) i

¢ X=HX*(FLOAT(IA)-0.5) ot

b DO 570 JA=1,NS(C) e
YsHY*(FLOAT(JA)-0.5) _

5, -:‘\

,{ CALL TEMO(X,Y,AA,BB,RATIO,1,1,H,HN) &j&‘

) DO 560 II=1,3 oSSt

q ZH(II)=H(1)*UP(C,II)+H(2)*US(C,II)+H(3)*UN(C,II) Y

560 CONTINUE e

WRITE(10,*) (ZH(II),II=1,3) .

o 570 CONTINUE N

o NGON

4 CLOSE(10) i

o STOP 'End of Run.' hﬁzg

. END o
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SUBROUTINE GREEN(XT,XI,PHI)
REAL XT(3),XI(3)

COMPLEX PHI,Z

COMMON A,B,AK

DATA FPI /12.56637062/
2«-CMPLX(0.0,1.0)

SPAN=0.0

DO 10 I=1,3
SPAN=SPAN+(XT(I)=XI(I))*x2
CONTINUE

SPAN=SQRT (SPAN)
Z=Z*AK*SPAN

Z=CEXP(2)

PHI=Z/(FPI*SPAN)

RETURN

END

SUBROUTINE GGREEN(XT,XI,GPHI)
REAL XT(3),XI(3),D(3)
COMPLEX GPHI(3),Z,2J
COMMON A,B,AK

DATA FPI /12.56637062/
2J=CMPLX(0.0,1.0)
SPS5Q=0.0

DO 10 I=1,3
D(I)=XT(I)-XI(I)
SPSQ=SPSQ+D(I)*%x2
CONTINUE
SPAN=SQRT(SPSQ)
Z=-ZJI*AK*SPAN
2=CEXP(2Z)

2«2/ (SPSQ*FPI)
SPAN=1.0/SPAN
2J=CMPLX(SPAN,AK)
2e2%2J

DO 20 I=1,3
GPHI(I)=Z*D(I)
CONTINUE

RETURN

END
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SUBROUTINE TEMO(X,Y,A,B,WL,N,M,H,HN)

This subroutine computes the magnetic field components for TE-MO
modes in a rectangular waveguide. The.-mode functions are normalized
so that each mode carries one watt of power above cutoff and one watt
reactive ( inductive ) below cutoff. The derivative of the magnetic
field components in the direction of the outward normal are also
computed.

IMPLICIT COMPLEX (2)

COMPLEX H(3),HN(3)

DATA PI,RMOE / 3.141592654, 376.730 /
2J=CMPLX(0.0,1.0)

AK=2.0*PI/WL
AKSQ=AK**2
GM=sPI*FLOAT(M)/A
GMSQ=GM*x*2
WLCO=2.0*A/FLOAT(M)

IF(WL.LT.WLCO) THEN
ZNEW=1.0
ARG=AKSQ-GMSQ
ZB=SQRT(ARG)

ELSE
ZNEW=ZJ
ARG=GMSQ-AKSQ
ZB=-2J*SQRT (ARG)

ENDIF

ZBC=CONJG(2B)

ZA=4 . 0*ZNEW*GMSQ/ (AK*ZBC*A*B*RMOE)
AMO=REAL(CSQRT(ZA))

GMX=GM*X

H(3)}=AMO*COS (GMX)
HN(3)=-ZJ*ZB*H(3)
IF(N.EQ.1) HN(3)=-HN(3)

H(2)=CMPLX(0.0,0.0)
HN(2)=CMPLX(0.0,0.0)

H(1)=ZJ*ZB*AMO*SIN(GMX)/GM
HN(1)=~ZJ*ZB*H(1)
IF(N.EQ.1) H(1)=-H(1)

RETURN
END
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Program DoMore.f

This program reads the geometrical data from file rec.dat as set
up by program rspec.f and the patch coupling data from file green.dat as
generated by dojob.f. The overdetermined system of equations 1s solved
in two coupled parts. The type A equations, equations due to testing on
the conducting surface, are partially solved for the pulse function
amplitudes while holding the mode amplitudes fixed. That 1is, a square
system of equations is built from Eqs. 23, 24, and 25 of the form Alxl =
bl’ where bl is a linear function of mode amplitudes. Next, the type B
equations, equations due to testing on the field boundaries, Eq. 26, are
partially solved for the mode amplitudes while holding the pulse func-
tion amplitudes fixed. Here we have Ayx, = b2, where b2 is a linear
function of the pulse function amplitudes. The overall iteration takes
the following form:

1. Hold the mode amplitudes fixed.

2. Make one ART update on the type A system, Alx1 = bl'

3. Hold the pulse amplitudes fixed.

4. Make one ART update on the type B system, A2x2 = b2.

5. Enforce the conservation of power constraint on the mode

amplitudes, Eq. 28.
6. Repeat until the solution vector from the type B equations
changes by less than 2 percent.
The ART update on the type A equations is done using subroutine ARTA.

This subroutine uses a relaxation factor R that is between 0 and 1. For

the asymmetric iris data in Section 1V, R =1, 1/2, 1/4, 1/8, with 10
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iterations at each value starting with l. The update on the type B

equations was done using subroutine ARTB with no relaxation; i.e., R =
1. Conservation of power was enforced by subroutine ECPMO.

The primary program variable definitions are:

A, C Test point and evaluation point indices, respec-

gl

AR B
A

tively.

-

b
<,

AL

S

V1(A,I) Absolute (x,y,z) position of first vertex on

rectangle A. I = 1,2,3 for x,y,z components,

)
!

respectively.

e 8

UN(A,I), UP(A,I) Unit vector directions n, p, and s.
US(A,I)

DP(A), DS(A) Distance primary and secondary for rectangle A.

LS = X XA S AL
;‘i&éﬂ h T

7

NP(A), NS(A) Number of primary and secondary subdivisions on

oL
A
{ -

rectangle A.
MODES(C) Number of modes on field boundary C.
NR Total number of rectangles enclosing the volume.
NRC Number of conducting rectangles out of the

total.

e

TRl ]

Number of field boundary rectangles.

vy

Real value. Ratio of the working wavelength to
the cutoff wavelength of the dominant mode on
field boundary number 1.

Integer values. Linear index, used for counting
and ordering patches on rectangles A, C. Com-
puted from a primary index I and a secondary

index J by the following sequence:

“l'( ’J'f'
N HT-“?'

I.f PN
>0

»
2V &
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@ CONTINUE

H(C,M,LC,1)

HI(L1,I)

2G(A,LA,C,LC)

ZGN(A,LA,C,LC)

ZF(A,LA,C,M,I)

WA
TR
b

DO @ I=1,NP(A)
M=NS(A)*(1-1)

DO @ J=1,NS(A)
LA=J+M

Complex array. Magnetic field distribution due
to mode M at point LC on field boundary rect-
angle C. 1 = 1,2,3 for x,y,z components.
Computed by dojob.f under variable name ZH(I).
Complex array. Magnetic field distribution due
to the incident mode at point L1 on field bound-
ary rectangle number 1. I = 1,2,3 for x,y,2z
components. Computed by dojob.f under variable
name ZH(I).
Complex array. Coupling from patch LC on rect-
angle C to point LA on rectangle A. 1Its value
is computed by dojob.f under the variable name
ZG.

Complex array. Coupling from patch LC to point
LA. Value computed by dojob.f under variable
name ZGN.
Complex array. Coupling from mode M on field
rectangle C to point LA on rectangle A. 1 =
1,2,3 for x,y,z components. Computed by dojob.f

under variable name ZF(I1).
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ZFI(A,LA,I) Complex array. Coupling from the incident or rl:v;':;
driving mode 1in field rectangle number 1 to
' point LA on rectangle A. I = 1,2,3 for x,y,z ¢ 3
: components. Computed by dojob.f under variable :“:‘
‘ '
: name ZF(I). RO
5 ZH(C,LC,I) Complex array. Solution vector for pulse func- '.‘;;:“(
E: tion amplitudes. Value for patch LC on rect- 2:5 3
',‘ angle C, I = 1,2,3 for Hp. Hs' and H‘;. ot
o ZA(C,M) Complex array. Solution vector for mode ampli- E—:
tudes, mode M on field boundary C. a:
:; ZHC(C,LC,I) Complex array. Work space, coupling to equation "
z‘ LA from the pulse amplitude coefficient LC on ;'
rectangle C, I = 1,2,3 for coupling Hp, H_, ‘%,. '
: and H‘;, respectively. &i}
:: ZAC(C,M) Complex array. Work space, coupling to equation f'{:;::._
::. LA from the amplitude of mode M on field bound- ::, o
} i
. ary C. &
DA(C,LC,I) Real array. Contains denominator terms needed :::'
" by the ART algorithm for the type A equations. :::é:,
K Used to update ZH(C,LC,I). Computed by first 'f':-":-'_
! access of subroutine ARTA. '.:
E DB(C,LC,I) Real array. Contains denominator terms for type -:E\:.'.:
l' B equations. Used to update ZA(C,M). Computed '
; by first access of subroutine ARTB. %s&'\ "
)
h: 3
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Program DoMore Pt
IMPLICIT COMPLEX (2) ¢
INTEGER A,C R,
REAL V1(10,3),UP(10,3),US(10,3),UN(10,3),DP(10),DS(10) Rt
DIMENSION ZF(10,40,2,8,3),ZFI(10,40,3),20LD(2,8) 3 Q:ﬁ
COMPLEX H(2,8,40,3),HI(40,3) L
COMMON /7 Bl / 2G(10,40,8,40),ZGN(10,40,8,40) !
COMMON / B2 7/ ZH(8,40,3),ZHC(8,40,3),DA(8,40,3) DY
COMMON 7/ B3 / ZA(2,8),ZAC(2,8),DB(2,40,3) X
COMMON / B4 / NP(10),NS(10),NRC,NFB,MODES(2) ;35\‘
) X
c Read in rectangle specification data as generated by rspec.f N
OPEN(10,FILE='rec.dat’ ,STATUS='old"') =
REWIND(10) O
READ(10,*) NR,NRC Tt
DO 10 I=1,NR R
READ(10,*) (V1(I,J3),J=1,3) PSR
READ(10,%) (UN(I,J),J=1,3) Sa et
READ(10,*) (UP(I1,J),J=1,3) IS
READ(10,*) (US(1,J),J3=1,3) AN
) READ(10,*) DP(I),DS(I),NP(I),NS(I) A
10  CONTINUE PN
CLOSE(10) A
Cc Read greens function data as generated by dojob.f .
OPEN(10,FILE='green.dat’' ,STATUS='0ld"') RCK
REWIND(10) N
READ(10,*) RATIO W
READ(10,*) NFB P
READ(10,*) (MODES(I),I=1,NFB) i
.?'\V"_F
DO 50 A=1,NR PN
DO 50 I=1,NP(A) ]
MM=NS(A)*(I-1) o
DO 50 J=1,NS(A) RN
LA=J+MM .
NESE
DO 30 C=1,NRC e
DO 30 K=1,NP(C) RGN
M=NS(C)*(K-1) e
DO 30 L=1,NS(C) DA
LC=L+M
READ(10,*) 2G(A,LA,C,LC),ZGN(A,LA,C,LC) N
30 CONTINUE Ej;q"‘
\ t
DC 40 C=1,NFB N "'.‘:-
DO 40 M=1,MODES(C) NV
READ(10,*) (2F(A,LA,C,M,I1I),II=1,3) B
40 CONTINUE P
ot
READ(10,*) (ZFI(A,LA,II),II=1,3) R
50 CONTINUE R
Gatal)
wO?n)

DO 60 Ce1,NFB

IC=C+NRC G
DO 60 N=1,MODES(C) o




60

70

80

DO 60 I=1,NP(IC)

M=NS(IC)*(I-1)

DO 60 J=1,NS(IC)

LC=J+M

READ(10,*) (H(C,N,LC,II),II=1,3)
CONTINUE

ICeNRC+1

DO 70 Iei,NP(IC)
MeNS(IC)*(I-1)

DO 70 J=1,NS(IC)

LC=J+M

READ(10,*) (HI(LC,II),II=1,3)
CONTINUE

CLOSE(10)
WRITE(6,*) ‘Done reading data files.'

Initialize unknown vectors.
DO 80 C=1,NRC

DO 80 I=1,NP(C)
M=NS(C)*(I-1)

DO 80 J=1,NS(C)

LC=J+M

DO 80 II=1,3
ZH(C,LC,I1)=CMPLX(0.0,0.0)
CONTINUE

DO 90 C=1,NFB
DO 90 Me=1,MODES(C)
ZA(C,M)=CMPLX(0.0,0.0)
ZOLD(C,M)=CMPLX(0.0,0.0)
CONTINUE

Initialize iteration control.
ITMAX=10

RESMAX=5.0E-06

NEQ1=0

DO 95 A=1,NRC
NEQ1=NEQ1+NP(A)*NS(A)
CONTINUE

NEQ2=0

DO 100 A=(NRC+1),NR
NEQ2=NEQ2+NP(A)*NS(A)
CONTINUE

WRITE(6,*) ‘Number of complex vector equations =' ,NEQ1,'+',NEQ2

IT=1

WRITE(6,*) 'Enter relaxation factor.'
READ(5,*) RLAX

RSUM=0.0

Start ART i{teration for type A equations.

Test loops over patches on conducting rectangles.
DO 220 A=1,NRC

DO 220 I=1,NP(A)

MMeNS(A)*(I-1)
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130

140

150

160

170

DO 220 J=1,NS(A)
LA=J+MM

Compute primary component LHS.
ZLHS=CMPLX(0.0,0.0)

DO 130 II=1,3
ZLHS«ZLHS+UP(A,II)*ZFI(A,LA,II)

DO 130 C=1,NFB

DO 130 NM=1,MODES(C)
ZLHS=ZLHS+ZA(C,NM)*UP(A,II)*ZF(A,LA,C ,NM,II)
CONTINUE

Compute coefficients coupling to the primary term.
DO 150 C=1,NRC

F1=0.0

F2=0.0

F3=0.0

DO 140 II=1,3

F1=F1+UP(A,II)*UP(C,II)
F2«F2+UP(A,II)*US(C,11)
F3=F3+UP(A,II)*UN(C,II)

CONTINUE

DO 150 K=1,NP(C)

M=NS(C)*(K-1)

DO 150 L=1,NS(C)

LC=L+M

ZHC(C,LC,1)=F1*ZGN(A,LA,C,LC)
ZHC(C,LC,2)=F2*ZGN(A,LA,C,LC)
ZHC(C,LC,3)=-F3*ZG(A,LA,C,LC)

CONTINUE
ZHC(A,LA,1)=ZHC(A,LA,1)+CMPLX(0.5,0.0)

Do update to vector ZH.
CALL ARTA(A,LA,1,IT,RSUM,RLAX,ZLHS)

Compute secondary component LHS.
ZLHS=CMPLX(0.0,0.0)

DO 160 II=1,3
ZLHS=ZLHS+US(A,II)*ZFI(A,LA,II)

DO 160 C=1,NFB

DO 160 NM=1,MODES(C)
ZLHS=ZLHS+ZA(C,NM)*US(A,II)*ZF(A,LA,C,NM,II)
CONTINUE

Compute coefficients coupling to the secondary term.
DO 180 C=1,NRC

F1=0.0

F2=0.0

F3=0.0

DO 170 1I-1,3
F1=F1+US(A,II)*UP(C,II)
F2=F2+US(A,II)*US(C,II)
F3=sF3+US(A,II)*UN(C,II)
CONTINUE

DO 180 X=1,NP(C)
M=aNS(C)*(K-1)

DO 180 L=1,NS(C)
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180

190

200

210

220

230

YL URORURY PRY @ gt 8.8 Pab Ba® at fat B0 $a% 220 Bat 4’ 00" M g ta 0y’

LCaL+M

ZHC(C,LC,1)=F1*2ZGN(A,LA,C,LC)
ZHC(C,LC,2)=F2*ZGN(A,LA,C,LC)
ZHC(C,LC,3)=-F3*2G(A,LA,C,LC)
CONTINUE
ZHC(A,LA,2)=ZHC(A,LA,2)+CMPLX(0.5,0.0)

Do update to vector ZH.
CALL ARTA(A,LA,2,IT,RSUM,RLAX,ZLHS)

Compute normal component LHS.
ZLHS=CMPLX(0.0,0.0)

DO 190 I1-1,3
ZLHS=ZLHS+UN(A,II)*ZFI(A,LA,II)

DO 190 C=1 ,NFB

DO 190 NM=1 /MODES(C)
ZLHS=ZLHS+ZA(C,NM)*UN(A,II)*ZF(A,LA,C,NM,II)
CONTINUE

Compute coefficients coupling to the normal term.
DO 210 C=1,NRC

F1=0.0

F20.0

F3=0.0

DO 200 II=1,3
Fl«F1+UN(A,II)*UP(C,II)
F2=F2+UN(A,IL1)*US(C,I1)
F3«F3+UN(A,II)*UN(C,II)
CONTINUE

DO 210 K=1,NP(C)
M=NS(C)*(K-1)

DO 210 L=1,NS(C)

LC=L+M
ZHC(C,LC,1)=F1*ZGN(A,LA,C,LC)
ZHC(C,LC,2)=F2*ZGN(A,LA,C,LC)
ZHC(C,LC,3)=-F3*ZG(A,LA,C,LC)
CONTINUE

Do update to vector ZH.
CALL ARTA(A,LA,3,IT,RSUM,RLAX,ZLHS)

CONTINUE
RA1=RSUM/FLOAT(3*NEQ1)

Start ART {teration for type B equations.
Test loops over patches on field boundaries.
RSUM=0.0

DO 300 A=(NRC+1),NR

IA«A-NRC

DO 300 I=1,NP(A)

MMeNS(A)*(I-1)

DO 300 J=1,NS(A)

LA=J+MM

Compute X component LHS.
ZLHS=ZFI(A,LA,1)
IF(IA.EQ.1) ZLHS=ZLHS-(0.5)*HI(LA,1)
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240

250

255

260

270

275

DO 240 C=1,NRC
DO 240 K=1,NP(C)

MeNS(C)*(K-1)

DO 240 L=1,NS(C)

LCe=L+M
ZLHS=ZLHS+UN(C,1)}*ZH(C,LC,3)*2G(A,LA,C,LC)
ZLHS=ZLHS-UP(C,1)*ZH(C,LC,1)*2GN(A,LA,C,LC)
ZLHS=ZLHS-US(C,1)*ZH(C,LC,2)*2GN(A,LA,C,LC)
CONTINUE

Compute coefficients coupling to the X component.

DO 250 C=1,NFB

DO 250 NM=1,MODES(C)
ZAC(C,NM)=-2F(A,LA,C,NM,1)

CONTINUE

DO 255 NM=1,MODES(IA)
ZAC(IA,NM)=ZAC(IA,NM)+(0.5)*H(IA,NM,LA,1)
CONTINUE

Do update to vector 2ZA.
CALL ARTB(IA,LA,1,IT,RSUM,ZLHS)

Compute Y component LHS.

ZLHS=ZFI(A,LA,2)

IF(IA.EQ.1) ZLHS=ZLHS-(0.S5)*HI(LA,2)

DO 260 C=1 ,NRC

DO 260 Ke=1 ,NP(C)

M=NS(C)*(K-1)

DO 260 L=1,NS(C)

LC=L+M
ZLHS=ZLHS+UN(C,2)*ZH(C,LC,3)*ZG(A,LA,C,LC)
ZLHS=ZLHS-UP(C,2)*ZH(C,LC,1)*ZGN(A,LA,C,LC)
ZUHS=2ZLHS-US(C,2)*ZH(C,LC,2)*ZGN(A,LA,C,LC)
CONTINUE

Compute coefficients coupling to the Y component.

DO 270 C=1,NFB
DO 270 NM=1,MODES(C)
ZAC(C,NM)=-ZF(A,LA,C,NM,2)

CONTINUE

DO 275 NM=1,MODES(IA)
ZAC(IA,NM)=ZAC(IA,NM)+(0.5)*H(IA,NM,LA,2)
CONTINUE

Do update to vector ZA.
CALL ARTB(IA,LA,2,IT,RSUM,ZLHS)

Compute Z component LHS.

ZLHS=ZFI(A,LA,3)

IF(IA.EQ.1) ZLHS=ZLHS-(0.5)*HI(LA,3)

DO 280 C=1,NRC

DO 280 K=1,NP(C)

M=aNS(C)*{K-1)

DO 280 L=1,NS(C)

LC=L+M
ZLHS=ZLHS+UN(C,3)*ZH(C,LC,3)*2ZG(A,LA,C,LC)
ZLHS=ZLHS-UP(C,3)*ZH(C,LC,1)*ZGN(A,LA,C,LC)
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280

290

298

300

305

310

320

330

ZLHSeZLHS-US(C,3)*ZH(C,LC,2)*ZGN(A,LA,C,LC)
CONTINUE

Compute coefficients coupling to the Z component.
DO 290 C=1,NFB

DO 290 NM=1 ,MODES(C)

ZAC(C ,NM)==2ZF(A,LA,C,NNM,3)

CONTINUE

DO 295 NM=1,MODES(IA)

ZAC(IA ,NM)«ZAC(IA,NM)+(0.5)*H(IA,NM,LA,3)
CONTINUE

Do update to vector ZA.
CALL ARTB(IA,LA,3,IT,RSUM,ZLHS)

CONTINUE
RA2=RSUM/FLOAT(3*NEQ2)
RA3=(RA1+RA2)/2.0

)
”ﬂﬂ

Enforce conservation of power.
CALL ECPMO(RATIO,DP)

. f-.'~f.'f~(
e
o %

L
5 Y

Compute fraction change in solution.

SNUM=0.0
SDEN=0.0 Y
DO 305 C=1,NFB N
DO 305 I=1,MODES(C) RAR:
SDEN=SDEN+CABS(ZA(C,1)}) A
ZDIFF=20LD(C,I)-ZA(C,I) W
SNUM=SNUM+CABS (ZDIFF) M
20LD(C,I)=2A(C,I) .
CONTINUE Iy
SNUM=SNUM/SDEN iy
WRITE(6,*) IT,': Ave error =',RA3,' Soln Chng =',SNUM NN
(‘,\-‘,
IF(RAL.LE.RESMAX) GOTO 320 N
IF(IT.GE.ITMAX) GOTO 310 -
IT=IT+1 e
GOTO 120 A
WRITE(6,*) 'Hit ITMAX limit; for more its type "1", otherwise "0".° }j
READ(S5,*) NANS e
IF(NANS.EQ.1) GOTO 110 AN
OPEN(10,FILEs'domore.dat’' ,STATUS="'unknown') N
WRITE(10,*) ‘' °* DO
WRITE(10,*) RATIO sy
WRITE(10,*) 'EA «',RAl1,' EB =',RA2 ENSN
DO 330 I=1,NFB S
DO 330 J=1,MODES(I) A

WRITE(10,*) I,J,ZA(I,J)
CONTINUE
CLOSE(10)

STOP 'End of Run.'
END
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SUBROUTINE ARTA(A,LA,N,ITEST,RSUM,FAC,ZLHS)
IMPLICIT COMPLEX (2)

INTEGER A,C

COMMON / B2 / ZH(8,40,3),ZHC(8,40,3),DA(8,40,3)
COMMON / B4 / NP(10),NS(10),NRC,NFB,MODES(2)

Check to see if this is a first pass access.
IF(ITEST.GE.2) GOTO 20

Compute denominator term.

DA(A,LA,N)=0.0

DO 10 C=1,NRC

DO 10 K=1,NP(C) ‘

M=NS(C)*(K-1) TN
DO 10 L=1,NS(C) Qx”l
LC=L+M RN
DO 10 II=1,3 DN
Z=ZHC(C,LC,II) ;3;3
DA(A,LA,N)=DA(A,LA,N)+REAL(Z*CONJG(Z)) -
CONTINUE RO
NN
Compute the real part of the residual. tﬁﬁ:
ALFA=0.0 A
DO 30 C=1,NRC RPN
DO 30 K=1,NP(C)
M=NS(C)*(K-1) A
DO 30 L=1,NS(C) D
LC=L+M N
DO 30 1I=1,3 RO
ZA=ZHC(C,LC,II) AN
ZY=ZH(C,LC,II)
RA=REAL(ZA) Ry
AA=AIMAG(ZA) N
RY=REAL(ZY) R
AY=AIMAG(ZY) RO
ALFA=ALFA+RAXRY-AA*AY RN
CONTINUE
ALFA=ALFA-REAL(ZLHS) Tl

RSUM=RSUM+ABS (ALFA) e

Update the vector ZH.
ALFA=FAC*ALFA/DA(A,LA,N)

ZA=ZHC(A,LA,N)

ZY=ZH(A,LA,N) L
RA=REAL (ZA) <
AA=AIMAG(ZA) N

RY=REAL(2Y) N
AY<AIMAG(ZY) R
RY=RY~-ALFA*RA

AY=AY+ALFA*AA

ZH(A,LA,N)=CMPLX(RY,AY)

Compute the imaginary part of the residual.
BETA=0.0

DO 50 C=1,NRC

DO S0 K=1,NP(C)

M=NS(C)*(K-1)
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DO S0 L=1,NS(C)
LC=L+M
DO S0 II=1,3
ZA=ZHC(C,LC,II)
ZY=2ZH(C,LC,II)
RA=REAL(ZA)
AA=AIMAG(ZA)
RY=REAL(2Y)
AY=AIMAG(ZY)
BETA=BETA+AAXRY+RA*AY
50 CONTINUE
BETA=BETA-AIMAG(ZLHS)
RSUM=RSUM+ABS (BETA)

C Update the vector ZH.
BETA=FAC*BETA/DA(A,LA,N)
ZA=ZHC(A,LA,N)
ZY=ZH(A,LA,N)
RA=REAL(ZA)
AA=AIMAG(ZA)
RY=REAL(ZY)
AY=AIMAG(ZY)
RY=sRY-BETA*AA
AY=AY-BETA*RA
ZH(A,LA,N)=CMPLX(RY,AY)

RETURN
END
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SUBROUTINE ARTB(IA,LA,N,ITEST,RSUM,ZLHS)
IMPLICIT COMPLEX (Z)

INTEGER C

COMMON / B3 / ZA(2,8),ZAC(2,8),DB(2,40,3)
COMMON / B4 / NP(10),NS(10),NRC,NFB,MODES(2)
DATA FAC /7 1.0 /

Check to see if this is a first pass access.
IF(ITEST.GE.2) GOTO 20

Compute denominator term.
DB(IA,LA,N)=0.0

DO 10 C=1,NFB

DO 10 NM=1 ,MODES(C)

Z=ZAC(C,NM)
DB(IA,LA,N)=DB(IA,LA,N)+REAL(Z*CONJG(Z))
CONTINUE

Compute the real part of the residual.
ALFA=0.0

DO 30 C=1,NFB

DO 30 NM=1,MODES(C)
ZB=ZAC(C,NNM)
ZY=ZA(C,NM)
RA=REAL(ZB)
AA=AIMAG(2B)
RY=REAL(ZY)
AY=AIMAG(ZY)
ALFA=ALFA+RA*RY-AA*AY
CONTINUE
ALFA=ALFA-REAL(ZLHS)
RSUM=RSUM+ABS (ALFA)

Update the vector ZA.
ALFA=FACXALFA/DB(IA,LA,N)
C=IA

DO 40 NM=1,MODES(C)
ZB=ZAC(C,NM)
ZY=ZA(C,NM)
RA=REAL(ZB)
AA=AIMAG(ZB)
RY=REAL(2Y)
AY=AIMAG(ZY)
RY=RY-ALFA*RA
AY=AY+ALFAXAA
ZA(C,NM)=CMPLX(RY,AY)
CONTINUE

Compute the imaginary part of the residual.
BETA=0.0

DO 50 C=1,NFB

DO S0 NMs=1,MODES(C)

ZB=ZAC(C,NM)

ZY=ZA(C,NM)

RA=REAL(ZB)

AA=AIMAG(ZB)

RY=REAL(2Y)
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60

AY=AIMAG(ZY)
BETA=BETA+AA*RY+RA*AY
CONTINUE
BETA=BETA-AIMAG(ZLHS)
RSUM=RSUM+ABS (BETA)

Update the vector ZA.
BETA=FAC*BETA/DB(IA,LA,N)
C=1IA

DO 60 NM=1 ,MODES(C)
ZB=ZAC(C,NM)
2Y=ZA(C,NM)
RA=REAL(ZB)
AA=AIMAG(ZB)
RY=REAL(2Y)
AY=AIMAG(ZY)
RY=RY-BETA*AA
AY=AY-BETA*RA
ZA(C,NM)=CMPLX(RY,AY)
CONTINUE

RETURN
END

IOUARICUE
,-k‘,\‘.a)\a ]
,'l‘ W g *n\;.«. ‘4.“
PO RS
DAL N

» [ H [}

4‘.':';‘.“
RRNONONX
1 ) ‘1 [ “

Y -"‘t“'t "‘\'.‘\
Ay hah

- 92 -

"l':‘l‘
.|':.I )
L




10

20

30

SUBROUTINE ECPMO(WL,DP)
IMPLICIT COMPLEX (2Z)
DIMENSION DP(10),NM(2)
COMMOM / B3 / ZA(2,8),2ZAC(2,8),DB(2,40,3)
COMMON / B4 / NP(10),NS(10),NRC,NFB,MODES(2)

¥ind ocut how many modes can propagate at each field plane.
DO 10 I=1,NPFB

IA=NRC+I

A=DP(IA)

NM(I)=IFIX(2.0%A/WL)

IF(NM(I).GT.MODES(I)) NM(I)=MODES(I)

CONTINUE

Compute the adjustment factor.
FAC=0.0

DO 20 I=1,NFB

IF(NM(I).EQ.0) GOTO 20

DO 20 J=1,NM(I)

Z=ZA(1,J)
FAC=FAC+REAL(Z*CONJG(Z))
CONTINUE

FAC=SQRT(FAC)

Adjust the solution vector to force conservation of power.
DO 30 I=1,NFB

IF(NM(I).EQ.0) GOTO 30

DO 30 J=1,NM(I)

ZA(I,J)=ZA(I,J)/FAC

CONTINUE

RETURN
END
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